Loading...
Search for: nucleation-growth-mechanisms
0.006 seconds

    Production of granulated-copper oxide nanoparticles for catalytic application

    , Article Journal of Materials Research ; Volume 25, Issue 10 , 2010 , Pages 2025-2034 ; 08842914 (ISSN) Hosseinpour, M ; Ahmadi, S. J ; Mousavand, T ; Outokesh, M ; Sharif University of Technology
    2010
    Abstract
    Ultra fine CuO nanoparticles In the range of 2 ± 0.2 nm were synthesized by the supercritical hiydrotliermal method in a batch reactor. Itwas demonstrated that elevating the pH of the Cu2+ precursor solution to around 6 (neutral condition) not only does not lead to excessive agglomeration of the particles, but also reduces particle size and in general promotes their nanoscale characteristics. Prepared nanoparticles were immobilized in the biopolymcric matrix of barium alginate and calcined at different temperatures resulting in micro spherical granules of high porosity and elevated mechanical strength. The fabricated samples were characterized using x-ray diffractometry (XRD), transmission... 

    A 3D continuum-kinetic monte carlo simulation study of early stages of nucleation and growth in ni electrodeposition

    , Article Electrochimica Acta ; Volume 236 , 2017 , Pages 1-9 ; 00134686 (ISSN) Zargarnezhad, H ; Dolati, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A 3D continuum code coupled with a kinetic Monte Carlo module has been developed for the simulation of Ni electrocrystallization in the initial stages of nucleation and growth. Mass transfer in solution was controlled by a finite-difference code which is distributed over an irregular nanoscale grid system in vertical direction to the substrate. Deposition events such as surface diffusion, chemisorption and crystallization in the system were considered in a KMC module that processes the output of a diffusion-controlled scheme in probability functions to model electrodeposition process on surface. Electrochemical data of this simulation was simultaneously generated according to analytical... 

    Electrochemical investigation of electrodeposited Fe-Pd alloy thin films

    , Article Electrochimica Acta ; Volume 56, Issue 1 , 2010 , Pages 483-490 ; 00134686 (ISSN) Rezaei, M ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Abstract
    In the present study, the electrodeposition of Fe, Pd and Fe-Pd alloys, in alkaline solutions, has been investigated. Using ammonium hydroxide and trisodium citrate as the complexing agents, it has been shown that the co-deposition of Fe and Pd is achieved due to diminishing the difference between the reduction potentials of these two metals. Cyclic voltammetry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficients of Fe2+ and Pd2+ are 1.11 × 10-6 and 2.19 × 10-5 cm2 s -1, respectively. The step potential experiments reveal that nucleation mechanism is instantaneous with a typical three-dimensional (3D) growth. At low overpotentials,...