Loading...
Search for: numerical-approach
0.012 seconds
Total 40 records

    An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules

    , Article International Journal of Sustainable Energy ; October , 2013 ; 14786451 (ISSN) Hejri, M ; Mokhtari, H ; Azizian, M. R ; Soder, L ; Sharif University of Technology
    2013
    Abstract
    Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage... 

    Remarks on numerical prediction of wall shear stress in entry flow problems

    , Article Communications in Numerical Methods in Engineering ; Volume 20, Issue 8 , 2004 , Pages 619-625 ; 10698299 (ISSN) Darbandi, M ; Hosseinizadeh, S. F ; Sharif University of Technology
    2004
    Abstract
    Today, commercial CFD codes are widely used to simulate many different entry flow problems. The flow in the developing zone undergoes a transition from a specified velocity profile at the inlet section to a fully developed profile in the region far from the inlet. Previous investigations have shown that the hydrodynamic variables, such as velocity and pressure magnitudes, along the centreline converge to a mesh independent solution even when coarse grid distributions are utilised. However, the present work shows that the local velocity profile is highly dependent on grid resolution in the vicinity of solid boundaries. It is shown that failure to account for the grid resolution can result in... 

    An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules

    , Article International Journal of Sustainable Energy ; Volume 35, Issue 4 , 2016 , Pages 396-410 ; 14786451 (ISSN) Hejri, M ; Mokhtari, H ; Azizian, M. R ; Söder, L ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage... 

    Irreversibility of nanomaterial due to MHD via numerical approach

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 1041-1050 ; 13886150 (ISSN) Balazadeh, N ; Shafee, A ; Tlili, I ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In current research, MAPLE software was utilized to scrutinize the heat transfer of copper–H2O nanomaterial migration over a sheet. Entropy production in existence of magnetic field was scrutinized, and Bejan number was reported as main outputs. Converting PDEs into ODEs was done via similarity transformation, and final ODEs were analyzed via RK4. The influence of different variables, including fraction of nanomaterial and Lorentz force on flow distribution and temperature field, also on surface tension and Nu was demonstrated. Besides, Be and NG were calculated for various ranges of scrutinized variables. © 2020, Akadémiai Kiadó, Budapest, Hungary  

    Design and analysis of a novel two DOF thermal micromanipulator

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings ; 2011 , pp. 654-659 ; ISBN: 9781612849836 Pourzand, H ; Ghaemi, R ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, a novel thermal microactuator is designed which is capable of producing bi-directional lateral and rotational output and one of its applications as a two DOF micromanipulator is shown. Also, by carefully choosing the doping level, temperature distribution is determined by considering the dependency of silicon's resistivity and conductivity to temperature. Using variable separation method an equation in terms of elliptic integrals is reached and after imposing boundary conditions the exact temperature distribution is obtained numerically. Currents at each branch is updated due to the last temperature distribution and this process is repeated several times until the final... 

    Thickness optimization of polyurethane floor insulation based on analysis of the heat transfer in a multi-layer

    , Article ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 ; Vol. 3, issue , 2014 Moosavi, A ; Saidi, M. H ; Reshadi, M ; Sharif University of Technology
    Abstract
    During the year, due to weather conditions, the temperature fluctuations at surface level cause problems in underground pipes as a result of freezing water. One of the best prevention strategies is the use of polyurethane floor insulation for keeping the temperature of clay above zero degrees Celsius. In this study to calculate the minimum thickness of polyurethane insulation layer, the differential equation of energy is solved based on principle of separation of variables using imaginary eigenvalues for consistency with the temperature distribution in multi-layer consist of asphalt, gravel and polyurethane with finite thickness and clay as a semiinfinite medium with periodic thermal... 

    Lattice Boltzmann method for simulating impulsive water waves generated by landslides

    , Article Scientia Iranica ; Vol. 21, issue. 2 , 2014 , p. 318-328 ; 1026-3098 Pak, A ; Sarfaraz, M ; Sharif University of Technology
    Abstract
    Impulsive water waves generated by landslides impose severe damage on coastal areas. Very large mass ows in the ocean can generate catastrophic tsunamis. Preventing damage to dams and coastal structures, and saving the lives of local people against landslide-generated waves, has become an increasingly important issue in recent years. Numerical modeling of landslide-generated waves is a challenging subject in CFD. The reason lies in the difficulty of determining the interaction between the moving solids and sea water, which causes complicated turbulent regimes around the moving mass and at the water surface. Submarine or aerial types of landslide can further complicate the problem. Up to now,... 

    Optimization of electrical power in multistage centrifugal compressors

    , Article 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011, Penang, 25 November 2011 through 27 November 2011 ; 2011 , Pages 193-197 ; 9781457716423 (ISBN) Mohammadi, H ; Kermani, M ; Sharif University of Technology
    Abstract
    Over the time, multistaging has proved to have some great benefits such as less electrical usage, so, nowadays; optimization of the electrical power usage in centrifugal compressors is an important issue to lead to the least usage of power. In this paper, we present a novel algorithm that provides this desire; it also shows different arrangement of the stages for the considered compressor. Simple single-stage compressor pressure ratio is normally limited by constraints of both aerodynamic and structural types. Reaching to minimum power leads to the least usage of electrical power. In this paper, we utilize theoretical relations which are extracted and have been presented a novel numerical... 

    On the operating rooms ventilation system

    , Article 12th International Conference on Indoor Air Quality and Climate 2011 ; Volume 4 , 2011 , Pages 3194-3199 ; 9781627482721 (ISBN) Sajadi, B ; Ahmadi, G ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Surgical site infection (SSI) is one of the important infectious problems in hospitals. It is well known that appropriate ventilation strategy is most effective way to control bacteria-carrying airborne particles responsible for SSI. With considerable improvement in the computational capacity of computers, computational fluid dynamics (CFD) technique has been widely used to study the indoor airflow and contaminant dispersion over the enclosures. In this research, the effect of inlet air velocity on the ultra-clean ventilation system performance is investigated Eulerian-Lagrangian numerical approach. The results show that surgical wound contamination may be highly affected by inlet velocity.... 

    Enhanced reflection in one-dimensional mostly-hollow metallic gratings at terahertz frequencies

    , Article IEEE Transactions on Terahertz Science and Technology ; Volume 1, Issue 2 , 2011 , Pages 435-440 ; 2156342X (ISSN) Khavasi, A ; Miri, M ; Mehrany, K ; Sharif University of Technology
    2011
    Abstract
    Enhanced transmission through metallic gratings with narrow slits is a well-known phenomenon for TM polarized waves at optical and microwave frequencies. A similar though fundamentally different phenomenon, i.e., enhanced reflection at terahertz frequencies, is reported here for the geometrical complement of the structure with narrow slits. The latter phenomenon cannot be related to the former by Babinet's principle, as their origin is quite different, and both are observed for the same polarization. This phenomenon is explored by studying the field profiles within the grating, and is attributed to the presence of TM cavity modes at specific frequencies. A simple formula is given to... 

    Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique

    , Article Case Studies in Thermal Engineering ; Volume 6 , September , 2015 , Pages 104-115 ; 2214157X (ISSN) Amini, Y ; Mokhtari, M ; Haghshenasfard, M ; Barzegar Gerdroodbary, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This research investigated the forced convection heat transfer by using the swirling impinging jets. This study focused on nozzles, which equipped with twisted tapes via a numerical approach. The computational domain created by utilizing the fully structured meshes, which had very high quality from the viewpoint of aspect ratio and skewness. The numerical simulations were performed at four different jet-to-plate distances (L/D) of 2, 4, 6 and 8, four Reynolds numbers of 4000, 8000, 12,000 and 16,000, and also four different twist ratios (y/w) of 3, 4, 5 and 6. The mesh-independent tests were conducted based upon the average Nusselt number. The obtained results revealed good agreement with... 

    A numerical approach to study the post-yield softening in cellular solids: role of microstructural ordering and cell size distribution

    , Article Acta Mechanica ; Volume 228, Issue 6 , 2017 , Pages 2005-2016 ; 00015970 (ISSN) Goodarzi Hosseinabadi, H ; Bagheri, R ; Altstadt, V ; Sharif University of Technology
    Springer-Verlag Wien  2017
    Abstract
    Designing meta-materials and cellular solids with biomimetic structures has received increasing attention in the past few years partially due to advances in additive manufacturing techniques that have enabled the fabrication of advanced materials with arbitrarily complex microarchitectures and novel functionalities. To impact on this trend, it is essential to develop our understanding about the role of microstructure on mechanical responses of these structures. Although a large literature exists on the general subject, the role of microstructure on the post-yield instability is not yet adequately documented. This research introduces a numerical approach to study the post-yield instability in... 

    Modeling convective heat propagation in a fractured domain with x-fem and least square method

    , Article ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017, 3 November 2017 through 9 November 2017 ; Volume 8 , 2017 ; 9780791858431 (ISBN) Bahmani, B ; Khoei, A. R ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    The main goal of the current study is developing an advanced and robust numerical tool for accurate capturing heat front propagation. In some applications such as impermeable medium, Heat transfer in the surrounding domain of fracture acts just as a conduction process but the heat transfer through the fractures appears as a convection process. From a mathematical point of view, a parabolic partial differential equation (PDE) should be solved in the surrounding domain whereas a hyperbolic PDE should be solved in the domain of fractures. In fact, they have completely different treatments and this is one of the complicated problems in this area. In this paper, the presence of fractures and... 

    Enhancement of surface adsorption-desorption rates in microarrays invoking surface charge heterogeneity

    , Article Sensors and Actuators, B: Chemical ; Volume 242 , 2017 , Pages 956-964 ; 09254005 (ISSN) Abdollahzadeh, M ; Saidi, M. S ; Sadeghi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This investigation is devoted to the influences of non-uniform wall characteristics on the surface adsorption-desorption rates in an electrokinetic microarray. Utilizing already explored electroosmotic and electrophoretic velocities, the species transport equations are solved by a finite-volume-based numerical approach. Uniform, sinusoidal, and pulse-like distributions of the zeta potential are considered in the analysis. The developed model is validated by comparing the results with those of two analytical solutions that are derived for limiting conditions. The results reveal that, in some cases, the surface charge heterogeneity can reduce the saturation time by more than 60%. The efficacy... 

    Shock-wave-detection technique for high-speed rarefied-gas flows

    , Article AIAA Journal ; Volume 55, Issue 11 , 2017 , Pages 3747-3756 ; 00011452 (ISSN) Akhlaghi, H ; Daliri, A ; Soltani, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2017
    Abstract
    This paper introduces a shock-wave-detection technique based on the schlieren imaging for continuum and rarefied-gas flows. The scheme is applicable for any existing two-dimensional flowfields obtained by experimental or numerical approaches. A Gaussian distribution for a schlieren function within the shock-wave region is considered. This enables the authors to access any desired locations through the shock (e.g., shock center, or leading- and trailing-edge locations). The bow shock-wave profile is described via a rational function, which could be employed for the estimation of shock angle. The relation between pre- and postshock flow properties along the shock wave with a high resolution... 

    Thermal performance of a kerosene-fired variable-mixing oxy-fuel burner

    , Article 48th AIAA Fluid Dynamics Conference, 2018, 25 June 2018 through 29 June 2018 ; 2018 ; 9781624105531 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    In this study, we simulate the thermal behavior of a kerosene-fired oxy-fuel burner. To do this, the velocity of pure oxygen is suitably changed to achieve variable-mixing of fuel and oxidizer. Before the simulation procedure, a number of primitive steps are taken to evaluate the selected numerical approaches and methods. In other words, we simulate the turbulent non-premixed kerosene–air flame confined in a combustor and compare the achieved numerical solutions with the available measurements to appraise the validity of achieved solutions. The comparisons are mainly provided for the predicted flame structure. The comparison indicates that the achieved numerical solutions are accurate enough... 

    Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 635-648 ; 09601481 (ISSN) Bozorgasareh, H ; Khalesi, J ; Jafari, M ; Gazori, H. O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A new impeller configuration with innovatively-designed shrouds is introduced, and its impact on the pressure head and efficiency of the semi-open centrifugal pump is explored using experimental and numerical approaches. The proposed design includes attaching specific plates called bladelets to a semi-open impeller to limit the secondary flows over the blades resulting in an increase in the pump head and efficiency. Hydraulic performance of a centrifugal pump with three different bladelets at angles of 30°, 60°, and 90° is investigated experimentally, and the results are compared to semi-open and closed impellers. The values of pressure head and efficiency of the proposed centrifugal pump... 

    Semi analytical prediction of automobile body temperature distribution in the top coat paint oven

    , Article Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009, 19 July 2009 through 23 July 2009 ; Volume 3 , 2009 , Pages 655-660 ; 9780791843581 (ISBN) Hanafizadeh, P ; Sajadi, B ; Saidi, M. H ; Khalkhali, H ; Taherraftar, M ; Sharif University of Technology
    Abstract
    Automotive industry frequently needs to test new products, according to different production parameters, in order to determine the actual thermal behavior of bodies before mass production is implemented. Numerical simulation of these processes can reduce the very expensive and time consuming experimental procedures. For the drying and hardening process of the top paint applied in the coating process, the body temperature must be raised according to the paint manufacturer regulations. Consequently, prediction of temperature distribution of the car body during various zones of ovens is very vital in the design and performance analysis of the paint dryers. In this research, a novel... 

    A rate-dependent constitutive equation for 5052 aluminum diaphragms

    , Article Materials and Design ; Vol. 60, Issue 1 , 2014 , pp. 13-20 ; ISSN: 02613069 Hosseini Kordkheili, S. A ; Ashrafian, M. M ; Toozandehjani, H ; Sharif University of Technology
    Abstract
    In this article, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress-strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson-Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user... 

    Nonlinear circuit model for discontinuity of step in width in superconducting microstrip structures and its impact on nonlinear effects

    , Article IEEE Transactions on Applied Superconductivity ; Volume 23, Issue 2 , 2013 ; 10518223 (ISSN) Javadzadeh, S. M. H ; Farzaneh, F ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    Superconducting materials are known to exhibit nonlinear effects and to produce harmonic generation and intermodulation distortion in superconductive circuits. In planar structures, these nonlinearities depend on the current distribution on the strip which is mainly determined by the structure of the device. This paper investigates the current distribution at the step-in-width discontinuity in superconducting microstrip transmission lines, which is computed by a numerical approach based on a 3-D finite-element method. This current distribution is used to obtain the parameters of the nonlinear circuit model for the superconducting microstrip step-in-width discontinuity. The proposed...