Search for: numerical-parametric-studies
0.006 seconds

    Design, modeling and optimization of a novel two DOF polymeric electro-thermal micro-actuator

    , Article Applied Mechanics and Materials ; Vol. 307 , 2013 , pp. 112-116 ; ISSN: 16609336 ; ISBN: 9783037856598 Sheikhbahaie, R ; Alasty, A ; Salarieh, H ; Sharif University of Technology
    In this paper, design, simulation and optimization of a novel electrothermally-activated polymeric microactuator capable of generating combination of bidirectional lateral and rotational motions are presented. The composite structure of this actuator is consisted of a symmetric meandered shape silicon skeleton, a SU8 thermal expandable polymer and a thin film chrome layer heater. This actuator is controlled by applying appropriate voltages on its four terminals. With the purpose of dimension optimization, a numerical parametric study is executed. The modeled actuator which is 1560 ?m long, 156 ?m wide and 30 ?m thick, demonstrates a remarkable lateral displacement of 23 ?m at power... 

    Behavior prediction of corrugated steel plate shear walls with openings

    , Article Journal of Constructional Steel Research ; Volume 114 , 2015 , Pages 258-268 ; 0143974X (ISSN) Farzampour, A ; Laman, J. A ; Sharif University of Technology
    Elsevier Ltd  2015
    Corrugated steel plate and simple steel plate shear wall construction is a widely accepted and efficient lateral force resisting construction. The widespread use is motivated by the large initial stiffness, high level of energy absorption, and ability to accommodate openings. There is a dearth of information regarding the detailed nonlinear, inelastic behavior of corrugated steel plate shear walls, particularly walls with openings. Presented here are the results of a detailed, numerical parametric study comparing corrugated steel plate and simple steel plate shear walls, with and without openings. Parameters studied are plate thickness, angle of corrugation, opening size, and opening... 

    Parametric analyses of multispan viscoelastic shear deformable beams under excitation of a moving mass

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 131, Issue 5 , 2009 , Pages 0510091-05100912 ; 10489002 (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    This paper presents a numerical parametric study on design parameters of multispan viscoelastic shear deformable beams subjected to a moving mass via generalized moving least squares method (GMLSM). For utilizing Lagrange's equations, the unknown parameters of the problem are stated in terms of GMLSM shape functions and the generalized Newmark-β scheme is applied for solving the discrete equations of motion in time domain. The effects of moving mass weight and velocity, material relaxation rate, slenderness, and span number of the beam on the design parameters and possibility of mass separation from the base beam are scrutinized in some detail. The results reveal that for low values of beam...