Loading...
Search for: numerical-procedures
0.011 seconds

    Bidirectional behavior of unreinforced masonry walls

    , Article Earthquake Engineering and Structural Dynamics ; Vol. 43, Issue 15 , 1 December , 2014 , pp. 2377-2397 ; ISSN: 00988847 Dolatshahi, K. M ; Aref, A. J ; Yekrangnia, M ; Sharif University of Technology
    Abstract
    Most of the studies related to the modeling of masonry structures have by far investigated either the in-plane (IP) or the out-of-plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load-bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement-controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the... 

    Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 14-15 , August , 2011 , Pages 792-798 ; 03770257 (ISSN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit is analyzed. After numerically solving the Poisson-Boltzmann equation, the momentum equation with electroosmotic body force is solved through an iterative numerical procedure for both favorable and adverse pressure gradients. The results reveal that, in case of pressure assisted flow, shear-thinning fluids reach higher velocity magnitudes compared with shear-thickening fluids, whereas the opposite is true when an adverse pressure gradient is applied. The Poiseuille number is found to be an increasing function of the dimensionless Debye-Hückel parameter, the wall zeta potential, and the flow behavior... 

    Steric effects on electrokinetic flow of non-linear biofluids

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 484 , 2015 , Pages 394-401 ; 09277757 (ISSN) Ahmadian Yazdi, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Some of electrokinetic-based biomicrofluidic devices work at zeta potentials that are sufficiently high for ionic size (steric) effects to show up. In the present effort, consideration is given to the steric effects on the hydrodynamics of electroosmotic flow in a rectangular microchannel. The distinction between this research and the previous ones is that we account for non-linear rheology of the fluids encountered in biomicrofluidic systems by means of the power-law viscosity model. The method of analysis consists of a finite-difference-based numerical procedure for a non-uniform distribution of grid points, which is applied to the dimensionless form of the governing equations including... 

    Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels

    , Article Applied Thermal Engineering ; Volume 90 , 2015 , Pages 838-847 ; 13594311 (ISSN) Ebrahimi, M ; Shafii, M. B ; Bijarchi, M. A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract A desired circulatory flow in flat-plate closed-loop pulsating heat pipes (FP-CLPHPs), which may ameliorate electronic thermal management, was achieved by using the new idea of interconnecting channels (ICs) to decrease flow resistance in one direction and increase the total heat transfer of fluid. In order to experimentally investigate the effects of the IC, two aluminum flat-plate thermal spreaders - one with ICs (IC-FP-CLPHP) and one without them - were fabricated. The FP-CLPHPs were charged with ethanol as working fluid with filling ratios of 35%, 50%, 65%, and 80% by volume. Performance of interconnecting channels in different heat inputs was explored, and the results... 

    Effects of insulated and isothermal baffles on pseudosteady-state natural convection inside spherical containers

    , Article Journal of Heat Transfer ; Volume 132, Issue 6 , April , 2010 , Pages 1-10 ; 00221481 (ISSN) Duan, Y ; Hosseinizadeh, S. F ; Khodadadi, J. M ; Sharif University of Technology
    2010
    Abstract
    The effects of insulated and isothermal thin baffles on pseudosteady-state natural convection within spherical containers were studied computationally. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables. Natural convection effect is modeled via the Boussinesq approximation. Parametric studies were performed for a Prandtl number of 0.7. For Rayleigh numbers of 104, 105, 106, and 107, baffles with three lengths positioned at five different locations were investigated (120 cases). The fluid that is heated adjacent to the sphere rises replacing the colder fluid, which sinks downward through the stratified stable thermal layer. For... 

    Control of thermo magnetic heat transfer in porous cavity with Baffle(s)

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 9, Issue PART A , 2010 , Pages 627-631 ; 9780791843826 (ISBN) Heidary, H ; Davoudi, M ; Pirmohammadi, M ; Sharif University of Technology
    Abstract
    Steady, laminar, natural-convection flow in the presence of a magnetic field in a porous cavity heated from left wall sinusoidally and cooled from right wall is considered. It is well known that unavoidable hydrodynamic movements can be damped with the help of a magnetic field. The Finite Volume method and SIMPLE algorithm for discretizing is used to solve the non-dimensional governing equations. The Convection and Diffusion term of the equations are discretized by Central Difference Scheme (CDS).The numerical procedure has been done over a range of Rayleigh number, Ra, and value of Hartmann number (Ha), 0 ≤ Ha ≤ 150 and effect of them is investigated on average and local Nusselt number.... 

    Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section

    , Article International Journal of Heat and Mass Transfer ; Volume 126 , 2018 , Pages 431-441 ; 00179310 (ISSN) Sedighi, E ; Amarloo, A ; Shafii, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In addition to some approaches such as changing the working fluid or number of turns in a flat-plate pulsating heat pipe (FP-PHP), geometrical changes are also appealing for enhancing the thermal performance of this type of heat pipes. The main idea of this investigation is to increase heat transfer rate by increasing flow circulation of working fluid. By placing additional branches in the evaporator section, secondary bubble pumps were created which improved the circulation of fluid inside the FP-PHP. In order to investigate the impact of these additional branches, two similar four-turn aluminum FP-PHPs were fabricated. One of them was the conventional FP-PHP and the other had four... 

    Characterization of liquid bridge formed during gas-oil gravity drainage in fractured porous media

    , Article 16th European Conference on the Mathematics of Oil Recovery, ECMOR 2018, 3 September 2018 through 6 September 2018 ; 2018 ; 9789462822603 (ISBN) Harimi, B ; Masihi, M ; Ghazanfari, M. H ; Shoushtari, A ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2018
    Abstract
    Gas-oil gravity drainage that takes place in the gas-invaded zone of fractured reservoirs is the main production mechanism of gas-cap drive fractured reservoirs as well as fractured reservoirs subjected to gas injection. Interaction of neighboring matrix blocks through reinfiltration and capillary continuity effects controls the efficiency of gravity drainage. Existence of capillary continuity between adjacent matrix block is likely to increase the ultimate recovery significantly. Liquid bridge formed in fractures has a significant role in maintaining the capillary continuity between two neighboring matrix blocks. The degree of capillary continuity is proportional to capillary pressure in... 

    Numerical computation of compressible laminar flow with heat transfer in the entrance region of a pipe

    , Article 2008 ASME Summer Heat Transfer Conference, HT 2008, Jacksonville, FL, 10 August 2008 through 14 August 2008 ; Volume 3 , 2009 , Pages 445-454 ; 9780791848487 (ISBN) Ziaei Rad, M ; Nouri Broujerdi, A ; Seume, J ; Sharif University of Technology
    2009
    Abstract
    The authors' research work on pressure drop along gas transmission pipelines raised questions regarding the development length of the corresponding compressible flow and the effect of heat transfer in the entrance region on the pressure drop along the whole length of the pipe. In this paper, laminar, viscous, compressible flow in the entrance region of a pipe is investigated numerically in two dimensions. The numerical procedure is a finite-volume based finite-element method applied on unstructured grids. This combination together with a new method applied for boundary conditions allows accurate computation of the variables in the entrance region. The method is applied to some incompressible... 

    An improvement in the determination of end bearing capacity of drilled shafts in sand

    , Article Journal of GeoEngineering ; Volume 14, Issue 2 , 2019 , Pages 109-119 ; 19908326 (ISSN) Ahmadi, M. M ; Jazebi, M ; Sharif University of Technology
    Taiwan Geotechnical Society  2019
    Abstract
    There are many equations available in the literature using the results of CPT (cone penetration test) and SPT (standard penetration test) measurements to predict the end bearing capacity of drilled shafts in sand. However, there are few equations that use soil parameters, such as friction angle and elastic modulus, as input values. Also, these available equations usually overestimate the end bearing capacity, and at times show conflicting results with respect to the parameters they use. This paper describes a numerical procedure to overcome the above shortcomings. The results obtained in this study were compared with both experimental and numerical results available in the literature. A... 

    An improvement in the determination of end bearing capacity of drilled shafts in sand

    , Article Journal of GeoEngineering ; Volume 14, Issue 2 , 2019 , Pages 109-119 ; 19908326 (ISSN) Ahmadi, M. M ; Jazebi, M ; Sharif University of Technology
    Taiwan Geotechnical Society  2019
    Abstract
    There are many equations available in the literature using the results of CPT (cone penetration test) and SPT (standard penetration test) measurements to predict the end bearing capacity of drilled shafts in sand. However, there are few equations that use soil parameters, such as friction angle and elastic modulus, as input values. Also, these available equations usually overestimate the end bearing capacity, and at times show conflicting results with respect to the parameters they use. This paper describes a numerical procedure to overcome the above shortcomings. The results obtained in this study were compared with both experimental and numerical results available in the literature. A... 

    Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices

    , Article Analytica Chimica Acta ; Vol. 838, issue , August , 2014 , pp. 64-75 ; ISSN: 00032670 Sadeghi, A ; Amini, Y ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a... 

    Experimental and numerical investigation on the jet characteristics of spark ignition direct injection gaseous injector

    , Article Applied Energy ; Volume 105 , 2013 , Pages 8-16 ; 03062619 (ISSN) Chitsaz, I ; Saidi, M. H ; Mozafari, A. A ; Hajialimohammadi, A ; Sharif University of Technology
    2013
    Abstract
    Natural gas has widely been used as a fuel in conventional Diesel and spark ignition engines. The better understanding of injector parameters on the jet structure is helpful for the combustion optimization. This paper presents an experimental and numerical study on the jet structure of gaseous fuel injector in spark ignition direct injection engine by Schlieren technique and numerical procedure. Helium was injected through a gaseous injector at the different pressure ratios and nozzle diameters to understand the effects of nozzle geometry and pressure ratio for a dedicated correlation of CNG-SIDI injector. It was found that higher pressure ratio and exit nozzle diameter led to more tip... 

    Numerical simulation of turbulent unsteady compressible pipe flow with heat transfer in the entrance region

    , Article International Conference 'Turbulent Mixing and Beyond', Trieste, 18 August 2007 through 26 August 2007 ; Volume T132 , December , 2008 ; 02811847 (ISSN) Ziaei Rad, M ; Nouri Broujerdi, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, the compressible gas flow through a pipe subjected to wall heat flux in unsteady condition in the entrance region is investigated numerically. The coupled conservation equations governing turbulent compressible viscous flow in the developing region of a pipe are solved numerically under different thermal boundary conditions. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. The convection terms are discretized by the well-defined Roe method, whereas the diffusion terms are discretized by a Galerkin finite-element formulation. The temporal terms are evaluated based on an explicit fourth-order Runge-Kutta scheme. The effect of...