Loading...
Search for: offshore-oil-industry
0.005 seconds

    Authors’ reply to a comment on M. pasdar et al article

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 561 , 2019 , Pages 407-408 ; 09277757 (ISSN) Pasdar, M ; Kazemzadeh, E ; Kamari, E ; Ghazanfari, M. H ; Soleymani, M ; Sharif University of Technology
    Elsevier B.V  2019

    Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 581 , 2019 ; 09277757 (ISSN) Esfandyari Bayat, A ; Shams, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In recent decades, utilizing of water-based muds (WBMs) in drilling oil and gas wells is ever increasing comparing to oil-based muds and synthetic-based muds due to the lower environmental issues. However, the main drawbacks with WBMs are rheological properties inefficiency and shale swelling which have caused attentions turn to improvement of WBMs’ rheological properties. In this study, the effects of various nanoparticles (NPs) namely titanium dioxide (TiO2), silicon dioxide (SiO2), and zinc oxide (ZnO) on improving rheological properties and shale recovery rate of a WBM sample at two temperatures (25 and 50 °C) were investigated. The concentrations of NPs in the base mud were set at 0.01,...