Loading...
Search for:
oil-recovery-mechanisms
0.006 seconds
Activating solution gas drive as an extra oil production mechanism after carbonated water injection
, Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 11 , 2020 , Pages 2938-2945 ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
Materials China
2020
Abstract
Enhanced oil recovery (EOR) methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases. Over the last decade, carbonated water injection (CWI) has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency. During CWI process, as the reservoir pressure declines, the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur. As a result, it can lead to oil saturation restoration and subsequently, oil displacement due to the hysteresis effect. At this condition, CO2 would act as in-situ dissolved gas into the oil...
Experimental investigation of tertiary oil gravity drainage in fractured porous media
, Article Special Topics and Reviews in Porous Media ; Volume 1, Issue 2 , 2010 , Pages 179-191 ; 21514798 (ISSN) ; Rostami, B ; Kharrat, R ; Ayatollahi, Sh ; Ghotbi, C ; Sharif University of Technology
2010
Abstract
The amount of residual oil trapped in the matrix of a fractured reservoir after water drive, either natural water drive or water injection, depends on the wettability of the matrix rocks. Gas oil gravity drainage (GOGD) has been proposed as the tertiary oil recovery process for this type of oil reservoir. The current work focuses on experimental investigation of tertiary GOGD in fractured porous media under different types of matrix wettability. Results of a set of experiments performed in artificial porous media composed of sand packs and glass beads of different wettability have been used to check the GOGD rate and the ultimate oil recovery for previously waterflooded models. A novel...