Loading...
Search for: oil-water-interfaces
0.005 seconds

    Cover picture: Nanostructured particles for controlled polymer release in enhanced oil recovery (energy technol. 9/2016)

    , Article Energy Technology ; Volume 4, Issue 9 , 2016 , Pages 1029- ; 21944288 (ISSN) Tamsilian, Y ; Ramazani S., A ; Shaban, M ; Ayatollahi, S ; de la Cal, J. C ; Sheng, J. J ; Tomovska, R ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    Abstract original image Smart Enhanced Oil Recovery Process using Core–Shell Nanoparticles: The cover image denotes schematically the enhanced oil recovery process by flooding using an aqueous dispersion of core–shell nanoparticles made up of protected polyacrylamide nanostructures (PPNs). Y. Tamsilian and his colleagues at Sharif University of Technology (Iran) and the Institute for Polymer Material (POLYMAT, Spain) demonstrated the synthesis of polyacrylamide nanoparticles protected with a hydrophobic polystyrene shell by using a one-pot, two-step inverse emulsion polymerization technique, where the polystyrene shell was created by surface polymerization. The presence of the hydrophobic... 

    Simulation study of the Gachsaran asphaltene behavior within the interface of oil/water emulsion: a case study

    , Article Colloids and Interface Science Communications ; Volume 33 , 2019 ; 22150382 (ISSN) Saeedi Dehaghani, A. H ; Soodbakhsh Taleghani, M ; Badizad, M. H ; Daneshfar, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Molecular dynamics (MD) simulation was utilized to study the role of asphaltene extracted from Gachsaran (an Iranian oilfield) at the synthetic oil-water interface. In agreement with experimental data, IFTs predicted by MD simulation for heptol/brine system showed a minima at around 50 vol.% n-heptane, reflecting the highest contribution of asphaltene into the interface. At greater n-heptane fractions, IFT was increased steadily. Simulation results suggest the asphaltene propensity for remaining in the bulk heptol phase rather related to the fraction of toluene in the mixture. Heptol ingredients, i.e., toluene and heptane, act differently with respect to asphaltene, where former tends to... 

    Nanostructured particles for controlled polymer release in enhanced oil recovery

    , Article Energy Technology ; Volume 4, Issue 9 , 2016 , Pages 1035-1046 ; 21944288 (ISSN) Tamsilian, Y ; Ramazani S., A ; Shaban, M ; Ayatollahi, S ; de la Cal, J. C ; Sheng, J. J ; Tomovska, R ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    With the decline in oil discoveries over recent decades, it is believed that enhanced oil recovery (EOR) technologies will play a key role to meet energy demand in the coming years. Polymer flooding is used commonly worldwide as an EOR process. In this work, we propose the synthesis of protected polyacrylamide (PAM) nanoparticles (PPNs) with a hydrophobic polystyrene (PSt) shell by one-pot two-step inverse emulsion polymerization, in which the PSt shell was created by surface polymerization. The shell protects the active PAM chains from premature degradation caused by the harsh environment in the reservoirs, controls the release of the chains as rheological modifiers, and additionally, it... 

    An atomistic insight into interfacial properties of brine nanofilm confined between calcite substrate and hydrocarbon layer

    , Article Applied Surface Science ; Volume 490 , 2019 , Pages 89-101 ; 01694332 (ISSN) Koleini, M. M ; Badizad, M. H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Molecular dynamics simulation was applied in this study to scrutinize the interfacial properties of water nano-film confined between calcite mineral and hydrocarbon layer, as two intrinsically different media. Such system resembles the environment experienced by water molecules in the pore spaces of underground carbonate reservoirs. The interplay between water film and confining phases, oil and mineral, strongly influences hydrocarbon production process; however, there is a lack of detailed understanding of the involved interactions. MD simulations indicate development of several layers with different water densities in the confined brine. Water molecules form well-ordered structure in three... 

    The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Farhadi, H ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Dynamic behavior of fluid-fluid interactions can potentially affect the performance of any enhanced oil recovery (EOR) process including low salinity water flooding. In this work, dynamic interfacial tension (IFT) of crude-oil/brine system is measured in a wide range of salinity of sea water (SW), from 50-time diluted sea water (SW50D) to 2-time concentrated sea water (SW2C). Contrary to the most of published IFT trends in the literature, for the system under investigation here, as the brine salinity increases the crude-oil/brine IFT reduces, which cannot be explained using the existing theories. The lack of a physical model to explain the observed phenomena was the motivation to develop a... 

    Experimental investigation on synergic effect of salinity and pH during low salinity water injection into carbonate oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 202 , 2021 ; 09204105 (ISSN) Mehraban, M. F ; Ayatollahi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Interaction between rock-fluid and fluid-fluid can have a significant effect on oil recovery. Changing the wettability of reservoir rock toward more water-wet or less oil-wet state is one of the expected mechanisms during low salinity water injection (LSWI). pH and salinity are of the most eminent factors of injection water controlling the wettability state of a crude oil/brine/rock system during any waterflooding operation. A small change in pH can affect the surface charges at the rock/water and oil/water interfaces leading to wettability alteration in a porous medium. In this study, the synergic effect of salinity and pH on the wettability state of carbonate rocks is evaluated through... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding...