Loading...
Search for: oil-water-separation
0.011 seconds

    Synthesis and Characterizes of Superoleophobic Coating on Stainless Steel

    , M.Sc. Thesis Sharif University of Technology Amirpoor, Setareh (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    The main objective of this project was to create some coatings with different wettability properties of water and oil on the 304 stainless steel mesh In order to achieve phase separation. With the aim of creating a hydrophilic property, Various resin such as SILRES BS29, PDDA PDMS-OH, PDMS-NH2 was used individually or mixed. Furthermore, silica and TiO2 nanoparticles were used to make surface roughness. Perfluorooctanoic acid with 15 fluorine atoms in its molecular structure were added to solution to create the effect of superoleophobic. The contact angle and the slip angle measurements tests were performed. morphology and structure of nanocomposite coating study by FESEM microscopy and... 

    Design and Fabrication of Water and Oil Separation Membranes Using Nano Technology and Wettability Properties of Surfaces

    , M.Sc. Thesis Sharif University of Technology Heydari, Mohammad Reza (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Due to population growth, the demand for water supply has increased. This need has drawn attention to the use of consumed and treatable water resources. Organic pollutants are a key source of water pollution. On the other hand, petrochemical oil pollution and frequent oil accidents during oil production or maritime transport have become one of the environmental problems.There are different methods for water and oil separation and water purification that in the present project, selective separation can be achieved by using hydrophobic materials and surface roughness and creating surfaces with two properties: superhydrophobic and ultra-oil friendly. This method is also very effective, cheap... 

    Synthesis of ethyl cellulose/aluminosilicate zeolite nanofibrous membranes for oilwater separation and oil absorption

    , Article Cellulose ; Volume 26, Issue 18 , 2019 , Pages 9787-9801 ; 09690239 (ISSN) Koushkbaghi, S ; Jamshidifard, S ; ZabihiSahebi, A ; Abouchenari, A ; Darabi, M ; Irani, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    ZSM-5 (Seolite Sconoy Mobil) aluminosilicate zeolites synthesized by the hydrothermal method were incorporated into the hydrophobic ethyl cellulose (EC) nanofibrous membrane. The performance of synthesized nanofibers was investigated for a gravity driven oil–water separation. The synthesized ZSM-5 nanozeolites and EC/ZSM-5 composite nanofibers were characterized using XRD, FESEM, XPS, FTIR and AFM analysis. The permeability of EC/ZSM-5 5 wt% for oil in water mixture was in order of n-hexane (5170 ± 60 L/m2 h) > n-heptane (4600 ± 50 L/m2 h) > cyclohexane (4350 ± 35 L/m2 h) > pump oil (3780 ± 28 L/m2 h) > lubricating oil (3200 ± 25 L/m2 h) > motor oil (2980 ± 20 L/m2 h) with a separation... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of... 

    Design and fabrication of a highly efficient, stable and durable new wettability coated stainless steel mesh for oil/water separation

    , Article Materials Letters ; Volume 256 , 2019 ; 0167577X (ISSN) Ghadimi, M. R ; Azad, M ; Amirpoor, S ; Siavash Moakhar, R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The separation of water-oil mixtures has attracted widespread attention because of the increasing amounts of oily wastewater produced from the daily activities of humans and different industrial processes. Therefore, the development of facile and efficient oil-water separation technologies is imperative. In this work, a new highly superhydrophilic-superoleophobic coated stainless steel mesh was fabricated using virtue of the surface modification of poly (BzVimBr-Vim)@PFOA@SiO2 nanoparticles (NPs) through a facile preparation process. The new fabricated superhydrophilic and highly oleophobic coating exhibits good adhesive properties. The oil contact angle (OCA) and water contact angle (WCA)... 

    A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water

    , Article Surface and Coatings Technology ; Volume 394 , 2020 Amirpoor, S ; Siavash Moakhar, R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A surface to separate oil–water mixtures is a global concern and highly needed particularly in oil industries. The present study was conducted to create a novel superhydrophilic/superoleophobic nanocomposite coating on the stainless-steel mesh for the aim of oil/water separation. Different hydrophilic resins along with PFOA as oleophobic agent with 15 flours in its chemical structure and various oxide nanoparticles containing SiO2 and TiO2 at different concentrations were studied to achieve superhydrophilic/superoleophobic surface. The fabricated nanocomposites were fully characterized via field-emission scanning microscopy (FESEM), atomic force microscopy (AFM) and Fourier-transform... 

    Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation

    , Article Journal of Coatings Technology and Research ; 2020 Ghadimi, M. R ; Siavash Moakhar, R ; Amirpoor, S ; Azad, M ; Dolati, A ; Sharif University of Technology
    Springer  2020
    Abstract
    The design and development of efficient approaches for water–oil separation have had widespread interest. Most previously introduced techniques and materials used for development of the successful separation of oily wastewater could not answer all the desired demands, such as being efficient and environmentally and economically friendly. Therefore, in seeking a novel method capable of answering these expectations, surfaces with special wettability were introduced. A novel, reusable, and recyclable superhydrophilic and superoleophobic poly(Vsim-Vim)@PFOA@SiO2 nanocomposite-coated stainless steel mesh was synthesized through a facile preparation process. Since the most important factors of... 

    Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation

    , Article Journal of Coatings Technology and Research ; Volume 18, Issue 2 , 2021 , Pages 511-521 ; 15470091 (ISSN) Ghadimi, M. R ; Siavash Moakhar, R ; Amirpoor, S ; Azad, M ; Dolati, A ; Sharif University of Technology
    Springer  2021
    Abstract
    The design and development of efficient approaches for water–oil separation have had widespread interest. Most previously introduced techniques and materials used for development of the successful separation of oily wastewater could not answer all the desired demands, such as being efficient and environmentally and economically friendly. Therefore, in seeking a novel method capable of answering these expectations, surfaces with special wettability were introduced. A novel, reusable, and recyclable superhydrophilic and superoleophobic poly(Vsim-Vim)@PFOA@SiO2 nanocomposite-coated stainless steel mesh was synthesized through a facile preparation process. Since the most important factors of... 

    Tuning the wetting properties of SiO2-based nanofluids to create durable surfaces with special wettability for self-cleaning, anti-fouling, and oil-water separation

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 23 , 2022 , Pages 8005-8019 ; 08885885 (ISSN) Esmaeilzadeh, P ; Ghazanfari, M. H ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Surfaces with special wettability have aroused lots of attention due to their broad applications in many fields. In this work, we systematically report selective and various fabrications of nanofluids based on readily available materials such as SiO2 nanoparticles and polydimethylsiloxane to create superhydrophobic, superoleophobic, superhydrophilic/superoleophobic, and underwater superoleophobic coatings. The efficiency of prepared coatings is investigated on mineral rock plates as porous substrates via the straightforward and cost-effective solution-immersion technique. The static water contact angle of 170°, effortless bouncing of water droplets, and self-cleaning property with a near... 

    Magnetic, thermally stable, and superhydrophobic polyurethane sponge: A high efficient adsorbent for separation of the marine oil spill pollution

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Habibi, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, we demonstrated a facile method for the fabrication of magnetic and superhydrophobic polyurethane sponge with water contact angle of 159° as an adsorbent for cleanup the marine oil spill pollution. For this aim, a polyurethane sponge was coated with carbon black (CB), hexagonal boron nitride (h-BN)@Fe3O4, and acrylic resin and then characterized by different techniques. Owing to the chemical and thermal stability of h-BN and CB, the modified sponge was stable under corrosive conditions (pH = 1–14 and salt solutions) and at different temperatures (−12 °C–105 °C). In addition to common oils and organic solvents, we also used the real spilled oils containing monoaromatics and...