Loading...
Search for: operational-modal-analysis
0.005 seconds

    A comparison between modal damping ratios identified by NExT-ERA and frequency domain impact test

    , Article Journal of Computational and Applied Research in Mechanical Engineering ; Volume 8, Issue 1 , 2018 , Pages 15-24 ; 22287922 (ISSN) Nouri, A ; Hajirezayi, S ; Sharif University of Technology
    Shahid Rajaee Teacher Tarining University (SRTTU)  2018
    Abstract
    In this research, the modal parameters of a beam in free-free condition are extracted by performing different experiments in the laboratory. For this purpose, two different techniques are employed. The first methodology is considered as a time domain method in Operational Modal Analysis. The other one is frequency domain impact hammer test which is categorized as an Experimental Modal Analysis method and can be regarded as the most common method in modal analysis. Checking the results obtained by the two methods, one can notice a distinct inconsistency in modal damping ratios extracted by each method. However, based on recent publications on the subject, it can be inferred that the time... 

    Modal identification of concrete arch dam by fully automated operational modal identification

    , Article Structures ; Volume 32 , 2021 , Pages 228-236 ; 23520124 (ISSN) Mostafaei, H ; Ghamami, M ; Aghabozorgi, P ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Modal identification is a type of system identification, which studies on the modal parameters of systems by using modal test. In the case of using operational or ambient modal analysis, there is no need to measure excitation, and the system output data are adequate for identification purposes. These modal parameters of system are of great importance from the engineering point of view particularly in the area of system identification, damage detection, and condition monitoring. In a fully-automated identification approach, the modal parameters are extracted without intervention of a specialized user. In this study, a Fully Automated Operational Modal Identification algorithm is developed to... 

    Enhanced stabilization diagram for automated modal parameter identification based on power spectral density transmissibility functions

    , Article Structural Control and Health Monitoring ; Volume 26, Issue 7 , 2019 ; 15452255 (ISSN) Afshar, M ; Khodaygan, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    Operational modal analysis based on power spectral density transmissibility (PSDT) functions is a useful tool to identify the modal parameters with low sensitivity to excitations. For pole extraction from the PSDT function, a proper parametric identification method such as the polyreference least squares complex frequency-domain method or poly-Max method can be used. Then, the poles are selected from a stabilization diagram (SD) with overestimating the system model order. Therefore, spurious modes can be identified that must be distinguished and removed from the system poles. To reach this aim, many techniques have been proposed and applied. In this paper, a new algorithm is proposed to... 

    Experimental Identification of Repeated Modes for a Plate Under Ambient Loading Using Time Domain Methods of Operational Modal Analysis

    , M.Sc. Thesis Sharif University of Technology Hajirezayi, Sajjad (Author) ; Hosseini Kordkhili, Ali (Supervisor)
    Abstract
    In this research, the reliability of time domain modal identification methods is studied. First three different MIMO time domain method are studied which are EITD, PRCE and ERA. The effectiveness and accuracy of the methods are evaluated for simulated mass-spring system and numerical cantilever beam in EMA (using time history data of impulse response directly) and OMA (using correlation function of random response of the structure) cases. Based on the results achived in this section, the most qualified method is identified (which was ERA) to continue the research. In order to evaluate the reliability of time domain OMA technique in case of repeated modes, first a numerical plate is studied... 

    Modal parameter identification of rotary systems based on power spectral density transmissibility functions

    , Article 2018 SAE World Congress Experience, WCX 2018, 10 April 2018 through 12 April 2018 ; Volume 2018-April , 2018 ; 01487191 (ISSN) Khodaygan, S ; Sharif University of Technology
    SAE International  2018
    Abstract
    Operational modal analysis based on power spectral density transmissibility functions (PSDT) is a powerful tool to identify the modal parameters with low sensitivity to excitations. The rotor systems may have the asymmetric damping or stiffness matrices which can lead to increase the difficulties of the identification procedure. In this paper, a new method is proposed to identify the modal parameters of the asymmetric rotary systems by the operational modal analysis based on the power spectral density transmissibility functions. For pole extraction from the PSDT function, a proper parametric identification method such as the Poly-reference Least Squares Complex Frequency-domain method... 

    A method for system identification in the presence of unknown harmonic excitations based on operational modal analysis

    , Article 2019 SAE Automotive Technical Papers, WONLYAUTO 2019, 1 January 2019 through 1 January 2019 ; Volume 2019-January, Issue January , 2019 ; 01487191 (ISSN) Khodaygan, S ; Sharif University of Technology
    SAE International  2019
    Abstract
    Operational modal analysis techniques classically have been developed based on the assumption that the input to the system is a stationary white noise. While, in many practical cases, the systems are excited by combination of white noise and colored noises (harmonic excitations). Consequently, in conditions where non-white noises are present, the existing OMA methods cannot completely distinguish between the system poles and the induced poles due to colored noises. In order to overcome this weakness of OMA methods, some researches have been conducted in the field. In this paper, a new method is proposed for identifying the modal parameters of the system under the unknown colored noises,... 

    Performing building vibration assessments by acoustic measurements

    , Article Building Acoustics ; Volume 27, Issue 1 , December , 2020 , Pages 21-33 Isavand, J ; Peplow, A ; Kasaei, A ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    This article presents an innovative application of the frequency domain decomposition method based on an acoustic and vibration response. Frequency domain decomposition method has been frequently used for operational modal analysis testing in the last decade to identify modal parameters for in-situ case studies. For these studies, the outputs of the vibration response through accelerometers have been employed in the analysis. In this article, the frequency domain decomposition method is employed, for the first time, to analyze both acoustic and vibration response of the building which is a novel application in building vibration response. As a case study, a cylindrical shaped seven-story... 

    Identification of Vibrational Characteristic of System under Colored Excitation base on the Transmissibility Functions

    , M.Sc. Thesis Sharif University of Technology Afshar, Mehrnoosh (Author) ; Behzad, Mehdi (Supervisor)
    Abstract
    Operational modal analysis (OMA) techniques are proper methods to identify the modal parameters of the structures such as natural frequencies, damping ratios and mode shapes based on the system responses. First research in this area are stared from civil engineering. Difference between civil structure and industrial machines are in the type of excitation.in most industries such as aerospace or mechanical, colored or harmonic forces due to rotary machines, excited the system. Under this condition, traditional methods in OMA are not capable any more. Many works has been done to modify traditional methods. Most of these work limited to situations that forces are harmonic and harmonic... 

    Automatic System Identification Algorithm Including Uncertainty Estimation based on Operational Modal Analysis

    , M.Sc. Thesis Sharif University of Technology Shakeri, Mohammad Sajad (Author) ; Khodaygan, Saeed (Supervisor) ; Movahedi, Mohammad Reza (Supervisor)
    Abstract
    Modal analysis is very important in determining the physical properties of structures and mechanisms. This field is divided into two general parts: Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA). In the operational modal analysis, there are more challenges for the analyst due to the lack of inputs to identify the system. Many of the mechanical structures can not be analyzed experimentally and under specific loadings, but should be identified under actual operating conditions and in situations where the inputs of the system are not measurable. For this purpose, a modal analysis method called "Random Sub-Space Identification" (SSI) is intoduced, which uses only output...