Loading...
Search for: optical-absorption
0.006 seconds

    Optical conductivity of triple point fermions

    , Article Journal of Physics Condensed Matter ; Volume 33, Issue 12 , 2021 ; 09538984 (ISSN) Habibi, A ; Farajollahpour, T ; Jafari, S. A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    As a low-energy effective theory on non-symmorphic lattices, we consider a generic triple point fermion Hamiltonian, which is parameterized by an angular parameter λ. We find strong λ dependence in both Drude and interband optical absorption of these systems. The deviation of the T2 coefficient of the Drude weight from Dirac/Weyl fermions can be used as a quick way to optically distinguish the triple point degeneracies from the Dirac/Weyl degeneracies. At the particular λ = π/6 point, we find that the 'helicity' reversal optical transition matrix element is identically zero. Nevertheless, deviating from this point, the helicity reversal emerges as an absorption channel. © 2021 IOP Publishing... 

    Blackening on Steel by Electrochemical Method

    , M.Sc. Thesis Sharif University of Technology Zare Mahdkhani, Shahin (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    In this study, the magnetite protective oxide layer was successfully formed on carbon steel substrate in an alkaline solution by an electrochemical method. The electroblackening was performed at a constant potential of 2 volts and in a 50 wt% solution at 75 ° C for 10 minutes. The properties of coating characterized using X-ray diffraction, field emission-scanning electron microscopy, polarization test and visible light spectrophotometery and porosity and thickness of oxide coating investigated. By adding 50 grams per liter of each of nitrate and chromate oxidizers, the porosity of oxide coating decreased from 24 percent to 14 percent and coating thickness increased from 1 micron to 3... 

    Electrical and Optical Characterization of Fabricated Carbon-Based Multilayer Structure versus Temperature

    , M.Sc. Thesis Sharif University of Technology Hooshyar, Parsa (Author) ; Fardmanesh, Mehdi (Supervisor) ; Zamani, Atieh (Co-Supervisor)
    Abstract
    This study presents a comprehensive investigation into the characterization of three distinct homogeneous multilayer self-standing thin films, composed of stacked reduced graphene oxide (rGO) planes, which were synthesized using a modified Hummer’s method. In order to investigate their structural, electrical, and optical properties, the samples were characterized by field emission scanning electron microscopy (FESEM), Raman spectroscopy, four-point probe measurements, Impedance measurements, Fourier-transform infrared spectroscopy (FTIR), and Time domain Terahertz Spectroscopy (TDS). The FESEM images obtained from the samples reveal a smooth sheet-like surface with few wrinkles.... 

    Extreme light absorption in a necking-free monolayer of resonant-size nanoparticles for photoelectrochemical cells

    , Article Journal of Optics (United Kingdom) ; Vol. 16, issue. 7 , 2014 ; ISSN: 20408978 Dabirian, A ; Sharif University of Technology
    Abstract
    Semiconductor photoelectrodes for water oxidation that absorb visible light usually have poor electronic transport properties and small optical absorption coefficients near their absorption edge. Therefore, innovative designs that lead to significant optical absorption in relatively thin layers of these compounds are highly desirable. Here, using full-field electromagnetic optical simulations, we demonstrate that a monolayer of resonant-size BiVO4 spheres can provide enhancement up to a factor of two in solar light absorption relative to dense planar layers. In this monolayer, BiVO4 spheres do not need to be interconnected; therefore, such monolayers are flexible and their fabrication... 

    Photonic design of embedded dielectric scatterers for dye sensitized solar cells

    , Article RSC Advances ; Volume 5, Issue 42 , Mar , 2015 , Pages 33098-33104 ; 20462069 (ISSN) Malekshahi Byranvand, M ; Dabirian, A ; Nemati Kharat, A ; Taghavinia, N ; Sharif University of Technology
    Abstract
    Embedded dielectric scatterers comprise an important approach for light trapping in dye-sensitized solar cells (DSCs) due to their simple fabrication process. The challenge in applying these scatterers lies in finding the optimal dimensions and concentration of the scatterers. This requires many experiments and it is often quite difficult to have a starting point for optimizing the concentration. Based on theories of light propagation in random media, we propose a simple model for DSCs with embedded silica spherical particles. Then, by full-wave optical calculations, we determine a narrow range for the concentration of silica particles that leads to the largest optical absorption in the... 

    Compound Hertzian chain model for copper-carbon nanocomposites' absorption spectrum

    , Article Micro and Nano Letters ; Volume 6, Issue 4 , 2011 , Pages 277-279 ; 17500443 (ISSN) Kokabi, A ; Hosseini, M ; Saeedi, S ; Moftakharzadeh, A ; Vesaghi, M. A ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    The infrared range optical absorption mechanism of carbon-copper composite thin layer coated on the diamond-like carbon buffer layer has been investigated. By consideration of weak interactions between copper nanoparticles in their network, optical absorption is modelled using their coherent dipole behaviour induced by the electromagnetic radiation. The copper nanoparticles in the bulk of carbon are assumed as a chain of plasmonic dipoles, which have coupling resonance. Considering nearest neighbour interactions for this metallic nanoparticles, surface plasmon resonance frequency (ω 0) and coupled plasmon resonance frequency (ω 1) have been computed. The damping rate against wavelength is... 

    Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol

    , Article Carbon ; Volume 49, Issue 1 , January , 2011 , Pages 11-18 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2011
    Abstract
    Graphene oxide platelets synthesized by using a chemical exfoliation method were dispersed in a suspension of ZnO nanoparticles to fabricate ZnO/graphene oxide composite. Formation of graphene oxide platelets (with average thickness of ∼0.8 nm) hybridized by ZnO nanoparticles (with average diameter of ∼20 nm) was investigated. The 2D band in Raman spectrum confirmed formation of single-layer graphene oxides. The gradual photocatalytic reduction of the graphene oxide sheets in the ZnO/graphene oxide suspension of ethanol was studied by using X-ray photoelectron spectroscopy for different ultra violet (UV)-visible irradiation times. After 2 h irradiation, the relative concentration of the... 

    Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles

    , Article ACS Applied Materials and Interfaces ; Volume 7, Issue 27 , July , 2015 , Pages 14926-14932 ; 19448244 (ISSN) Dabirian, A ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    We propose and theoretically evaluate a plasmonic light trapping solution for thin film photovoltaic devices that comprises a monolayer or a submonolayer of wavelength-scale silver particles. We systematically study the effect of silver particle size using full-wave electromagnetic simulations. We find that light trapping is significantly enhanced when wavelength-scale silver particles rather than the ones with subwavelength dimensions are used. We demonstrate that a densely packed monolayer of spherical 700 nm silver particles enhances integrated optical absorption under standard air mass 1.5 global (AM1.5G) in a 7 μm-thick N719-sensitized solar cell by 40% whereas enhancement is smaller... 

    Physicochemical and antibacterial properties of chitosan-polyvinylpyrrolidone films containing self-organized graphene oxide nanolayers

    , Article Journal of Applied Polymer Science ; Volume 133, Issue 11 , 2016 ; 00218995 (ISSN) Mahmoudi, N ; Ostadhossein, F ; Simchi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Chitosan films have a great potential to be used for wound dressing and food-packaging applications if their physicochemical properties including water vapor permeability, optical transparency, and hydrophilicity are tailored to practical demands. To address these points, in this study, chitosan (CS) was combined with polyvinylpyrrolidone (PVP) and graphene oxide (GO) nanosheets (with a thickness of ∼1 nm and lateral dimensions of few micrometers). Flexible and transparent films with a high antibacterial capacity were prepared by solvent casting methods. By controlling the evaporation rate of the utilized solvent (1 vol % acidic acid in deionized water), self-organization of GO in the... 

    First-principles study on ZnV2O6 and Zn2V2O7: two new photoanode candidates for photoelectrochemical water oxidation

    , Article Ceramics International ; Volume 44, Issue 6 , 2018 , Pages 6607-6613 ; 02728842 (ISSN) Sameie, H ; Sabbagh Alvani, A. A ; Naseri, N ; Du, S ; Rosei, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    We used first principles calculations based on density functional theory with generalized gradient approximation to investigate and compare the structural, electronic and optical properties of two photoanode materials, ZnV2O6 and Zn2V2O7, for use in photocatalytic water splitting. After geometry optimization, the calculated structural parameters evince a satisfactory agreement with the reported experimental results indicating that the used method and conditions are suitable. The electronic structures demonstrate that both photocatalysts possess favorable band gaps (2.31 and 2.52 eV) and appropriate band edge positions for oxygen evolution reaction under solar radiation. The relatively light... 

    Stability, size and optical properties of colloidal silver nanoparticles prepared by electrical arc discharge in water

    , Article EPJ Applied Physics ; Volume 48, Issue 1 , 2009 , Pages 10601p1-10601p7 ; 12860042 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Ahadian, M. M ; Hormozi Nezhad, M. R ; Sharif University of Technology
    2009
    Abstract
    We have fabricated and characterised colloidal silver nanoparticles by the electrical arc discharge method in DI water. Size and optical properties of the silver nanoparticles were studied versus different arc currents. Optical absorption indicates a plasmonic peak at 392 nm for 10 A which increases to 398 nm for 20 A arc current. This reveals that by raising the arc current the size of the nanoparticles increases. Optical absorption of silver nanoparticles after 3 weeks shows precipitation of them in a water medium. The effect of different surfactant and stabilizer concentrations such as cethyl trimethylammonium bromide (CTAB), polyvinyl pyrrolidone (PVP), sodium citrate, sodium dodecyl... 

    Enhancement of antibacterial properties of Ag nanorods by electric field

    , Article Science and Technology of Advanced Materials ; Volume 10, Issue 1 , 2009 ; 14686996 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2009
    Abstract
    The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20-60 nm and a length of 260-550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100}... 

    Hyperthermia response of PEGylated magnetic graphene nanocomposites for heating applications and accelerate antibacterial activity using magnetic fluid hyperthermia

    , Article Applied Physics A: Materials Science and Processing ; Volume 126, Issue 4 , 2020 Hatamie, S ; Shih, P. J ; Soufi Zomorod, M ; Heravi, P ; Ahadian, M. M ; Hatami, N ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research work, graphene/cobalt nanocomposites are functionalized with polyethylene glycol (PEG) to be a platform for theranostics application and antibacterial activity. The non-covalent functionalization of PEG on the surfaces of nanocomposites improved their stability and diminished their cytotoxicity. The PEGylated nanocomposites are demonstrated to allow simultaneous administration of two cancer therapy methods such as magnetic fluids hyperthermia (MFH) which is carried out by converting magnetic energy into heat through ferromagnetic cobalt nanoparticles and heat generation through near-infrared optical absorption by the reduced graphene oxide. A concise simulation is carried... 

    Surface plasmon resonance of two-segmented Au-Cu nanorods

    , Article Nanotechnology ; Volume 19, Issue 41 , 2008 ; 09574484 (ISSN) Azarian, A ; Iraji Zad, A ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2008
    Abstract
    Two-segmented gold-copper nanorods were electrodeposited inside the pores of polycarbonate track-etched membranes from two separate solutions. The PCT membranes were dissolved in dichloromethane (CH2Cl2) and the solvent was replaced by methanol solution. Optical absorption spectra of two-segmented Au-Cu nanorods dispersed in methanol showed two peaks which were related to the transverse mode of copper and the longitudinal mode of gold. By increasing the length of the gold segment, when the total length of both metals was fixed at 1 μm, the copper and gold peaks shifted to the blue and red wavelengths, respectively. We observed that the wavelengths of the extinction peaks are not in good... 

    Colouration process of colloidal tungsten oxide nanoparticles in the presence of hydrogen gas

    , Article Applied Surface Science ; Volume 258, Issue 24 , 2012 , Pages 10089-10094 ; 01694332 (ISSN) Tahmasebi Garavand, N ; Ranjbar, M ; Mahdavi, S. M ; Iraji Zad, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this study, tungsten oxide nanoparticles were fabricated by pulsed laser ablation (PLA) of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.2 g/lit PdCl 2 solution was added to activate the solution against the hydrogen gas. Dynamic light scattering and X-ray photoelectron spectroscopy were used to measure the average size and the surface chemical composition of the synthesized nanoparticles, respectively. The aim is to investigate the influence of hydrogen exposure time on colouration process of colloidal nanoparticles. According to optical measurements, hydrogen bubbling into the produced colloidal Pd-WO 3 led to formation of... 

    Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method

    , Article Applied Physics A: Materials Science and Processing ; Volume 96, Issue 2 , 2009 , Pages 423-428 ; 09478396 (ISSN) Ashkarran, A. A ; Iraji zad, A ; Mahdavi, M ; Ahadian, M. M ; Hormozi nezhad, M. R ; Sharif University of Technology
    2009
    Abstract
    We report a simple, inexpensive and one-step synthesis route of colloidal gold nanoparticles using arc discharge between titanium electrodes in HAuCl 4 solution achieving long-time stability. Gold nanoparticles of 8 nm diameter were formed during reduction of HAuCl4 in the plasma discharge zone. The resulting nanoparticles were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Optical absorption spectroscopy of as prepared samples at 15 A arc current in HAuCl4 solution shows a surface plasmon resonance around 550 nm. It was found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal... 

    Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol-gel

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 23 , November , 2008 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2008
    Abstract
    In this study, chemical durability of metallic copper nanoparticles dispersed in sol-gel silica thin films was investigated by exposing the films to air after a reduction process. At first, heat treatment in air for 1 h produced silica films containing crystalline cupric oxide nanoparticles agglomerated on the film surface. Subsequently, reduction of the oxidized films in a reducing environment of N2-H2 for another 1 h at temperatures of 400, 500 and 600 °C resulted in the formation of crystalline metallic Cu nanoparticles diffused in the silica matrix. The time evolution of the surface plasmon resonance absorption peak of the reduced Cu nanoparticles was studied after the reduction... 

    The effect of Au/Ag ratios on surface composition and optical properties of co-sputtered alloy nanoparticles in Au-Ag:SiO2 thin films

    , Article Journal of Alloys and Compounds ; Volume 486, Issue 1-2 , 2009 , Pages 22-28 ; 09258388 (ISSN) Sangpour, P ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Gold-silver alloy nanoparticles with various Au concentrations in sputtered SiO2 thin films were synthesized by using RF reactive magnetron co-sputtering and then heat-treated in reducing Ar + H2 atmosphere at different temperatures. The UV-visible absorption spectra of the bimetallic systems confirmed the formation of alloy nanoparticles. The optical absorption of the Au-Ag alloy nanoparticles exhibited only one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. The maximum absorption wavelength of the surface plasmon band showed a red shift with increasing...