Loading...
Search for: optical-and-electrical-properties
0.011 seconds

    Recent advances in silicon nanowire biosensors: Synthesis methods, properties, and applications

    , Article Nanoscale Research Letters ; Volume 11, Issue 1 , 2016 ; 19317573 (ISSN) Namdari, P ; Daraee, H ; Eatemadi, A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of... 

    Tunable bandgap and spin-orbit coupling by composition control of MoS2 and MoOx (x = 2 and 3) thin film compounds

    , Article Materials and Design ; Volume 122 , 2017 , Pages 220-225 ; 02641275 (ISSN) Erfanifam, S ; Mohseni, S. M ; Jamilpanah, L ; Mohammadbeigi, M ; Sangpour, P ; Hosseini, S. A ; Iraji Zad, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    We report on the MoS2 and MoOx (x = 2 and 3) composite thin layers, electrodeposited, onto a Florine doped Tin Oxide (FTO) substrate. Our results show a change in relative content of these compounds in different thicknesses ranging from ∼20 to 540 nm. This change in the relative content at different thicknesses leads to a change in optical and electrical properties including bandgap and the type of semiconductivity. A sharp transition from p to n-type of semiconductivity is observed by scanning tunneling spectroscopy measurements. We find that the spin-orbit interaction of Mo 3d electrons in the MoS2 and MoO3 enhances by significant reduction of the MoO3 content in thicker layers. © 2017... 

    Two-dimensional materials for gas sensors: from first discovery to future possibilities

    , Article Surface Innovations ; Volume 6, Issue 4-5 , 2018 , Pages 205-230 ; 20506252 (ISSN) Barzegar, M ; Tudu, B ; Sharif University of Technology
    ICE Publishing  2018
    Abstract
    Semiconductor gas sensors have been developed so far on empirical bases, but now recent innovative materials for advancing gas sensor technology have been made available for further developments. Two-dimensional (2D) materials have gained immense attention since the advent of graphene. This attention inspired researchers to explore a new family of potential 2D materials. The superior structural, mechanical, optical and electrical properties of 2D materials made them attractive for next-generation smart device applications. There are considerable improvements and research studies on graphene, molybdenum disulfide (MoS2), tungsten disulfide (WS2), tin sulfide (SnS2), black phosphorus and other... 

    Aqueous spray pyrolysis of CuInSe2 thin films: Study of different indium salts in precursor solution on physical and electrical properties of sprayed thin films

    , Article Materials Science in Semiconductor Processing ; Volume 126 , 2021 ; 13698001 (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Herein, we deposited CuInSe2(CISe) thin films by using aqueous spray deposition method and post selenization process. The effect of different indium precursor salts including indium chloride, indium nitrate and indium acetate on the structural, morphological, optical and electrical properties of sprayed CISe layers has been studied by using x-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM-EDS), optical transmission (UV–Vis), Mott-Schottky analysis, I–V dark measurements. Although all the deposited thin films show a chalcopyrite tetragonal ordering structure of CISe, the crystallinity, morphology, and electrical characteristics are strongly influenced by the type of... 

    Morphology, optical and electrical properties of Cu-Ni nanoparticles in a-C:H prepared by co-deposition of RF-sputtering and RF-PECVD

    , Article Applied Surface Science ; Volume 258, Issue 2 , 2011 , Pages 727-731 ; 01694332 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Gelali, A ; Zahrabi, H ; Solaymani, S ; Sharif University of Technology
    Abstract
    We report optical and electrical properties of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with different surface morphology. Ni NPs with layer thicknesses of 5, 10 and 15 nm over Cu NPs @ a-C:H were prepared by co-deposition of RF-sputtering and RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. A nonmetal-metal transition was observed as the thickness of Ni over layer increases. The surface morphology of the sample was described by a two dimensional (2D) Gaussian self-affine fractal, except the sample with 10 nm thickness of Ni over layer, which is in the nonmetal-metal transition region. X-ray diffraction profile... 

    Optical and electrical properties of the copper-carbon nanocomposites

    , Article Nanophotonics II, Strasbourg, 7 April 2008 through 9 April 2008 ; Volume 6988 , 2008 ; 0277786X (ISSN); 9780819471864 (ISBN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Ahmadi, M ; Sharif University of Technology
    2008
    Abstract
    We prepared copper-carbon nanocomposite films by co-deposition of RF-Sputtering and RF-PECVD methods at room temperature. These films contain different copper concentration and different size of copper nanoparticles. The copper content of these films was obtained from Rutherford Back Scattering (RBS) analyze. We studied electrical resistivity of samples versus copper content. A metal-nonmetal transition was observed by decreasing of copper content in these films. The electrical conductivity of dielectric and metallic samples was explained by tunneling and percolation models respectively. In the percolation threshold conduction results from two mechanisms: percolation and tunneling. In the...