Loading...
Search for: optical-resonators
0.007 seconds

    Design and fabrication of photonic crystal nano-beam resonator: transmission line model

    , Article Journal of Lightwave Technology ; Volume 32, Issue 1 , 14 November 2013 , Pages 91-98 Miri, M ; Sodagar, M ; Mehrany, K ; Eftekhar, A. A ; Adibi, A ; Rashidian, B ; Sharif University of Technology
    Abstract
    We present a new method for modeling and design of photonic crystal nano-beam resonators (PCNBRs) based on cascaded transmission lines. The proposed model provides an accurate estimate of the PCNBRs properties such as resonance wavelength and quality factor (Q) with much smaller computation cost as compared to the brute-force numerical methods. Furthermore, we have developed a straightforward technique for the design of high-Q PCNBRs based on resonance modes with Gaussian electromagnetic field profiles. The results obtained by using the proposed transmission line model are compared against numerical and experimental results and the accuracy of the model is verified. The proposed model... 

    Analysis of transient response and instability in fiber ring resonators containing an erbium-doped fiber amplifier and quantum dot-doped fiber saturable absorber

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 30, Issue 12 , December , 2013 , Pages 3215-3224 ; 07403224 (ISSN) Tofighi, S ; Bahrampour, A. R ; Sharif University of Technology
    Optical Society of American (OSA)  2013
    Abstract
    In this paper, the transient response of a double coupler fiber ring resonator containing an erbium-doped fiber amplifier (EDFA) in half part of the fiber ring resonator and a quantum dot-doped fiber (QDF) saturable absorber in the other half, is investigated. It is demonstrated that, depending on the device parameters and the input power of the signal and pump, various types of dynamic behaviors (such as bistability, monostability, and regenerative pulsation) can be observed in this intrinsic, optical bistable device. The proposed device can be exploited by optical communication networks to realize all-optical functionalities  

    Optical bistability in fiber ring resonator containing an erbium doped fiber amplifier and quantum dot doped fiber saturable absorber

    , Article Applied Optics ; Volume 51, Issue 29 , 2012 , Pages 7016-7024 ; 1559128X (ISSN) Tofighi, S ; Farshemi, S. S ; Sajjad, B ; Shahshahani, F ; Bahrampour, A. R ; Sharif University of Technology
    2012
    Abstract
    In this paper we study the optical bistability in a double coupler fiber ring resonator which consists of an erbium doped fiber amplifier (EDFA) in half part of the fiber ring and a quantum dot doped fiber (QDF) saturable absorber in the other half. The bistability is provided by the QDF section of the ring resonator. The EDFA is employed to reduce the switching power. The transmitted and reflected bistability characteristics are investigated. It is shown that the switching power for this new bistable device is less than 10 mW  

    Opposing trends of geometrical parameters in maximisation of micro-ring resonator quality factor

    , Article Electronics Letters ; Volume 47, Issue 25 , 2011 , Pages 1388-1390 ; 00135194 (ISSN) Jalaly, S ; Rezaei, M ; Mehrany, K ; Sharif University of Technology
    Abstract
    Opposing trends of geometrical parameters in minimisation of bending loss and thus in maximising the quality factor are briefly discussed for micro-ring resonators. It is shown that, while the quality factor of low order modes is an oscillatory function of geometrical parameters, the quality factor of high order modes is a monotonic function. The former has discrete pairs of optimum inner and outer ring radii which maximises the quality factor. In contrast, the quality factor of the latter has no local maximum. Introduction of slight inhomogeneities does not change the overall behaviour of the quality factor but can increase its overall level when the refractive index of the ring region... 

    Optical isolation enabled by two time-modulated point perturbations in a ring resonator

    , Article Optics Express ; Volume 28, Issue 11 , 2020 , Pages 16805-16821 Zarif, A ; Mehrany, K ; Memarian, M ; Heydarian, H ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    In this paper we achieve non-reciprocity in a silicon optical ring resonator, by introducing two small time-modulated perturbations into the ring. Isolators are designed using this time-perturbed ring, side-coupled to waveguides. The underlying operation of the time-modulated ring and isolator is analyzed using Temporal Coupled Mode Theory (TCMT). The TCMT is used to find the angular distance, phase difference and thickness of the two time-modulated points on the ring resonator and also to find and justify the optimum values for the modulation frequency and amplitude, which yields maximum isolation in the isolator arrangements. Insight into the major players that determine isolation are also... 

    Design and test of an astigmatism compensated dynamical stable ring resonator for a subjoule class Nd:YAG laser without external elements

    , Article Optical Engineering ; Volume 58, Issue 2 , 2019 ; 00913286 (ISSN) Razzaghi, D ; Rezanejad, M ; Shayganmanesh, M ; Gohari, N ; Sharif University of Technology
    SPIE  2019
    Abstract
    An astigmatism compensated isosceles triangular ring resonator is designed and tested for a subjoule class Nd:YAG laser, considering the thermal lensing effects. The ABCD approach is used and the laser rod is considered as a lens like media whose optical power is induced by dissipated heat in the rod. The beam spot size, divergence angle, and some other parameters were studied for both sagittal and tangential planes and a minimal astigmatic configuration is designed applying dynamic stability condition. It is shown practically that the designed resonator emits a circular TEM00 Gaussian beam (using an aperture). Comparative studies were also done considering a linear resonator especially for... 

    Novel Optical Implementations of Reservoir Computing with Single or Limited Number of Neurons

    , M.Sc. Thesis Sharif University of Technology Boshgazi, Somayeh (Author) ; Mehrany, Khashayar (Supervisor) ; Memarian, Mohammad (Supervisor)
    Abstract
    Artificial neural networks are systems based on the brain’s functionality which in many cases are able to process highly complex computational tasks like speech recognition, image recognition ,and time series prediction. Due to the complexity of training algorithms in recurrent neural networks, reservoir computers have significant importance in machine learning.Due to low power consumption and crosstalk, high bandwidth and high-speed computing in optics, reservoir computing has proceeded to optical implementations. A reservoir computer consists of three layers: the input layer, reservoir, and output layer. A recurrent neural network is usually used as the reservoir in reservoir computers.... 

    Resonant-size spherical bottom scatterers for dye-sensitized solar cells

    , Article RSC Advances ; Volume 3, Issue 47 , 2013 , Pages 25417-25422 ; 20462069 (ISSN) Dabirian, A ; Taghavinia, N ; Sharif University of Technology
    2013
    Abstract
    We numerically evaluate the effect of a monolayer of resonant-size TiO 2 spheres on the performance of dye-sensitized solar cells (DSCs). This scattering layer is placed between the transparent conducting layer and the dye-sensitized mesoporous TiO2 layer. We carried out our numerical calculations by solving full-wave Maxwell equations in the entire DSC structure using the rigorous coupled-waves approach (RCWA). The layer of TiO2 spheres functions as a strong reflector, leading to strong confinement of the incident light within the absorbing layer of the DSC. The reflectance from this layer originates from coupling of light to the optical resonance modes of the TiO2 spheres. Comparing... 

    Tunable left-handed characteristics of ferrite rectangular waveguide periodically loaded with complementary split-ring resonators

    , Article IEEE Transactions on Magnetics ; Volume 49, Issue 8 , 2013 , Pages 4780-4784 ; 00189464 (ISSN) Ghalibafan, J ; Komjani, N ; Rejaei, B ; Sharif University of Technology
    2013
    Abstract
    We propose, for the first time, a tunable left-handed (LH) waveguide consisting of an array of complementary split-ring resonators built on the broad wall of a rectangular waveguide filled with ferrite material. The left-handed behavior is caused by the negative permittivity of the complementary split-ring resonators together with the negative permeability of the transversely magnetized ferrite. The electromagnetic behavior of this structure is studied by means of an equivalent circuit model. From this model, the dispersion relation of the guide is derived and validated numerically by the finite element method. It is shown that this structure has a left-handed frequency band that can be... 

    QuT: A low-power optical network-on-chip

    , Article Proceedings - 2014 8th IEEE/ACM International Symposium on Networks-on-Chip, NoCS 2014, 17 September 2014 through 19 September 2014 ; 2015 , Pages 80-87 ; 9781479953479 (ISBN) Khadem Hamedani, P ; Enright Jerger, N ; Hessabi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    To enable the adoption of optical Networks-on-Chip (NoCs) and allow them to scale to large systems, they must be designed to consume less power and energy. Therefore, optical NoCs must use a small number of wavelengths, avoid excessive insertion loss and reduce the number of microring resonators. We propose the Quartern Topology (QuT), a novel low-power all-optical NoC. We also propose a deterministic wavelength routing algorithm based on Wavelength Division Multiplexing that allows us to reduce the number of wavelengths and microring resonators in optical routers. The key advantages of QuT network are simplicity and lower power consumption. We compare QuT against three alternative... 

    Two-dimensional edge detection by guided mode resonant metasurface

    , Article IEEE Photonics Technology Letters ; Volume 30, Issue 9 , 1 May , 2018 , Pages 853-856 ; 10411135 (ISSN) Saba, A ; Tavakol, M. R ; Karimi Khoozani, P ; Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this letter, a new approach to perform edge detection is presented using an all-dielectric complimentary metal-oxide-semiconductor-compatible metasurface. Our design is based on the guided-mode resonance, which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure is easy to fabricate, and it can be exploited for detection of edges in two dimensions due to its symmetry. In addition, a tradeoff between gain and the resolution of edge detection is discussed, which can be adjusted using appropriate design parameters. The proposed edge detector potentially can be used in ultrafast analog computing and image processing. ©... 

    Analysis and simulation of ring resonator silicon electro-optic modulators based on PN junction in reverse bias

    , Article Optical Engineering ; Vol. 53, issue. 12 , 2014 ; ISSN: 00913286 Jafari, O ; Akbari, M ; Sharif University of Technology
    Abstract
    The theory of silicon optical modulators of ring resonators based on PN diode in reverse bias is primarily discussed. It secondarily provides a full-featured simulator to investigate the behavior of such modulators. Wave equation for ring structure will be solved by using the conformal transformation method and the matrix method as it was used to analyze bent planar optical waveguides. Power coupling between ring and straight waveguides will be calculated by coupled theory of nonparallel waveguides based on experimental results. The time response demonstrates the capability of this device to operate correctly at up to 10 Gbs-1 bitrate, and the frequency spectrum analysis of device shows a >... 

    A circuit model for analysis of metal-insulator-metal plasmonic complementary split-ring resonators

    , Article Journal of Lightwave Technology ; Vol. 32, issue. 15 , August , 2014 , pp. 2659-2665 ; ISSN: 07338724 Bahadori, M ; Eshaghian, A ; Mehrany, K ; Sharif University of Technology
    Abstract
    A circuit model based on the transmission line theory is proposed to analyze the recently introduced metal-insulator-metal (MIM) complementary split-ring resonators (CSRRs). It is shown that integer and noninteger modes of CSRRs can be characterized by transmission line models with short- and open-circuited terminals. The proposed circuit model is then extended to incorporate side-coupling effects between the CSRRs and straight MIM waveguides. Thereby, simple closed-form expressions are provided for the coupling quality factor. It is shown that waveguide resonator structures based on CSRRs at specific resonance frequency and bandwidth can be smaller than waveguide resonator structures based... 

    Optimization and simulation of micrometre-scale ring resonator modulators based on p-i-n diodes using firefly algorithm

    , Article Optik ; Volume 128 , 2017 , Pages 101-112 ; 00304026 (ISSN) Jafari, O ; Akbari, M ; Sharif University of Technology
    Elsevier GmbH  2017
    Abstract
    Field analysis of ring resonator modulators based on p-i-n diodes has been dissected in this paper. This analysis is performed in time and frequency domains. The conformal transformation method has been used for solving 3-D wave equation. Coupling coefficient between the ring and straight waveguides are obtained by developing the coupled-mode assumption. In the resonant wavelength of 1573.91 nm, a drop of more than 15 dB in frequency spectrum of the device has been observed. Time domain simulation shows that this modulator could support up to 0.4 Gb/s and up to 1.5 Gb/s for NRZ and RZ signals, respectively. Obtained simulation results in both domains have been properly complied with... 

    HTS YBCO resonator configuration with a coplanar optimized flux concentrator strongly coupled to RF squid

    , Article IEEE Transactions on Applied Superconductivity ; Volume 28, Issue 4 , 2018 ; 10518223 (ISSN) Qaderi, F ; Shanehsazzadeh, F ; Mazdouri, B ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    We developed a novel magnetic coupling module, formed of a monolayer superconducting flux concentrator that is integrated with a coplanar resonator, strongly coupled to high-temperature superconducting radio frequency superconducting quantum interference device (SQUID). Three types of resonators, including a long stripline resonator between the input loop and the pick-up loop of the flux concentrator, a complementary split ring resonator, and a spiral shape inside the input loop, are explored. The resonance quality factor of different patterns of these three types of the resonators, as well as their coupling to the SQUID, is evaluated using finite-element-method simulations. Several readout... 

    Design guidelines for a tunable SOI based optical isolator in a partially time-modulated ring resonator

    , Article IEEE Photonics Journal ; Volume 14, Issue 5 , 2022 ; 19430655 (ISSN) Zarif, A ; Mehrany, K ; Memarian, M ; Jamshidi, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, we present the design guidelines for a tunable optical isolator in an SOI-based ring resonator with two small time-modulated regions. By considering a physical model, the proper geometrical and modulation parameters are designed, based on a standard CMOS foundry process. The effect of the variation of the key parameters on the performance of the isolator is explained by two counter-acting mechanisms, namely the separation between the resonance frequencies of counter-rotating modes and energy transfer to the side harmonic. We show that there is a trade-off between these parameters to obtain maximum isolation. Consequently, by applying the quadrature phase difference one can... 

    Plasma actuator effects on the flow physics of dynamic stall for a vertical axis wind turbine

    , Article Physics of Fluids ; Volume 34, Issue 7 , 2022 ; 10706631 (ISSN) Zare Chavoshi, M ; Ebrahimi, A ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Darrieus type vertical axis wind turbines have several advantages over other wind turbines for local electricity generation in urban environments. However, the main aerodynamic challenge is the negative impacts of the dynamic stall phenomenon on the turbine performance. This study numerically scrutinizes the effects of plasma actuators on the dynamic stall control and performance improvement of a Darrieus turbine. For this sake, unsteady Reynolds-averaged Navier-Stokes equations are solved using a pressure-based finite volume method. The Suzen-Hoang plasma actuator model is employed to calculate the body forces attributed to the plasma actuator. First, the dynamic stall characteristics of... 

    All-optical flip-flop composed of a single nonlinear passive microring coupled to two straight waveguides

    , Article Optics Communications ; Volume 282, Issue 3 , 2009 , Pages 427-433 ; 00304018 (ISSN) Bahrampour, A. R ; Mirzaee, M. A ; Farman, F ; Zakeri, S ; Sharif University of Technology
    2009
    Abstract
    Microrings can have different hysteresis characteristics at their different resonance frequencies. They can be used as a multi-hysteresis optical component. In this paper an optical D-flip-flop circuit composed of a single nonlinear passive microring coupled to two straight waveguide based on the Kerr effect is proposed. The proposed circuit can operate as an optical digital circuit which synchronizes input DATA with the CLOCK of the circuit. A simple analytical model for hysteresis design and the transient analysis of the proposed D-flip-flop are presented. According to our model, the switching time of the flip-flop is in the order of 10 ps. Crown Copyright © 2008