Loading...
Search for: optimal-control-problem
0.008 seconds

    Minimization of time to reach final speed in planing craft by optimal control of drive and trim tab angles

    , Article FAST 2013 - 12th International Conference on Fast Sea Transportation ; 2013 Yengejeh, M. A ; Seif, M. S ; Mehdigholi, H ; Sharif University of Technology
    FAST 2013 Secretariat  2013
    Abstract
    Properly adjusting the trim angle during the craft speed up, plays an important role in easily passing through the resistance hump and to reach final speed in minimum possible time. Present study tries to reply to this question that how the angles applied to a trimmable drive system and trim tab of the planing craft should be changed during speed up from rest, to craft reach a final speed in minimum time. This is a time-optimal control problem with the drive and trim tab angles as its control variables. To solve this problem a 3-DOF dynamic model is developed here rely on empirical data and relations. For the propulsion system operation of propeller, drive and engine altogether are taken... 

    Probabilistic determination of pilot points for zonal voltage control

    , Article IET Generation, Transmission and Distribution ; Volume 6, Issue 1 , January , 2012 , Pages 1-10 ; 17518687 (ISSN) Amraee, T ; Soroudi, A ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Owing to the local nature of voltage and reactive power control, the voltage control is managed in a zonal or regional basis. A new comprehensive scheme for optimal selection of pilot points is proposed in this study. The uncertainties of operational and topological disturbances of the power system are included to provide the robustness of the pilot node set. To reduce the huge number of probable states (i.e. combined states of load and topological changes), a scenario reduction technique is used. The resulted optimal control problem is solved using a new immune-based genetic algorithm. The performance of the proposed method is verified over IEEE 118-bus and realistic Iranian 1274-bus... 

    Closed-form optimal cooperative guidance law against random step maneuver

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 52, Issue 1 , 2016 , Pages 319-336 ; 00189251 (ISSN) Nikusokhan, M ; Nobahari, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Based on the optimal control theory, the present study proposes a novel approach to derive a cooperative guidance law for two pursuers with an arbitrary-order linear dynamics against one zero-lag evader with random step maneuver. This approach is intended to minimize the mean value of the resultant control effort taken over a set of possible evader maneuvers which is modeled as a step function, the parameters of which are unknown. Since the resultant control effort is the minimum effort among the pursuers, we encounter the nonlinear "min" function in the performance index. By introducing binary parameters, it is changed to a linear function including binary parameters and continuous... 

    Trajectory optimization for a high speed planing boat based on Gauss pseudospectral method

    , Article Proceedings - 2011 2nd International Conference on Control, Instrumentation and Automation, ICCIA 2011 ; 2012 , Pages 195-200 Salarieh, H ; Ghorbani, M. T ; Sharif University of Technology
    Abstract
    In this paper, the problem of Optimal Trajectory Planning for a high speed planing boat under nonlinear equality and inequality path constraints, is addressed. First, a nonlinear mathematical model of the craft's dynamic is constructed. To solve a trajectory optimization problem, we can utilize the indirect or direct methods. In the indirect methods, the maximum principle of Pontryagin is used to transform the optimal control problem into Euler-Lagrange equations, on the other hand, in the direct methods it is necessary to transcribe the optimal control problem into a nonlinear programming problem (NLP) by discretization of states and controls. The resulted NLP can be solved by... 

    Optimal control of human-like musculoskeletal arm: prediction of trajectory and muscle forces

    , Article Optimal Control Applications and Methods ; Volume 38, Issue 2 , 2017 , Pages 167-183 ; 01432087 (ISSN) Sharifi, M ; Pourtakdoust, S. H ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Optimal trajectory and muscle forces of a human-like musculoskeletal arm are predicted for planar point-to-point movements using optimal control theory. The central nervous system (CNS) is modeled as an optimal controller that performs a reaching motion to final states via minimization of an objective function. For the CNS strategy, a cubic function of muscles stresses is considered as an appropriate objective function that minimizes muscles fatigue. A two-DOF nonlinear musculoskeletal planar arm model with four states and six muscle actuators is used for the evaluation of the proposed optimal strategy. The nonlinear variational formulation of the corresponding optimal control problem is... 

    Nonlinear optimal control of planar musculoskeletal arm model with minimum muscles stress criterion

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 12, Issue 1 , 2017 ; 15551415 (ISSN) Sharifi, M ; Salarieh, H ; Behzadipour, S ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    In this paper, the optimal performance of a planar humanlike musculoskeletal arm is investigated during reaching movements employing an optimal control policy. The initial and final states (position and velocity) are the only known data of the response trajectory. Two biomechanical objective functions are taken into account to be minimized as the central nervous system (CNS) strategy: (1) a quadratic function of muscle stresses (or forces), (2) total time of movement plus a quadratic function of muscle stresses. A two-degress of freedom (DOF) nonlinear musculoskeletal arm model (for planar movements) with six muscle actuators and four state variables is used in order to evaluate the proposed... 

    Regularization for optimal sparse control structures: a primal-dual framework

    , Article 2021 American Control Conference, ACC 2021, 25 May 2021 through 28 May 2021 ; Volume 2021-May , 2021 , Pages 3850-3855 ; 07431619 (ISSN); 9781665441971 (ISBN) Babazadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, the optimal trade-off between control structures and achievable closed-loop performance is addressed. Incorporation of sparsity promoting regularization terms to the primary objective function is a well-suited approach in feature selection and compressed sensing. By the evolving role of distributed and large-scale applications, modern optimal control problems have been equipped with regularization tools as well. However, the system dynamics and convex/nonconvex constraints in optimal control framework limits the effectiveness and applicability of regularization, enforce iterative or non-convex heuristics, and pose extensive exploration. In fact, available regularized feedback... 

    A multi-objective optimal insulin bolus advisor for type 1 diabetes based on personalized model and daily diet

    , Article Asia-Pacific Journal of Chemical Engineering ; Volume 16, Issue 4 , 2021 ; 19322135 (ISSN) Fakhroleslam, M ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    We proposed a personalized bolus advisor for patients with type 1 diabetes (T1D). A bolus advisor is a decision support system that recommends insulin doses based on an open-loop model-based optimization. To construct the bolus advisor, the optimal open-loop control of blood glucose (BG) concentration in T1D patients was represented as a multi-objective optimization problem. The insulin types, doses, and times for each injection were provided by the bolus advisor based on a personalized model and an average daily diet, which should be re-tuned frequently in specific time intervals. The constructed personalized model for T1D patients incorporates effects of the patient's age and body weight.... 

    Optimal production control and marketing plan in two-machine unreliable flexible manufacturing systems

    , Article International Journal of Advanced Manufacturing Technology ; Vol. 73, issue. 1-4 , 2014 , pp. 487-496 ; ISSN: 02683768 Entezari, A. R ; Karimi, B ; Kianfar, F ; Sharif University of Technology
    Abstract
    In this paper, we have developed a production planning and marketing model in unreliable flexible manufacturing systems with inconstant demand rate that its rate depends on the level of advertisement on that product. The proposed model is more realistic and useful from a practical point of view. The flexible manufacturing system is composed of two machines that produce a single product. Markovian models frequently have been used in modeling a wide variety of real-world systems under uncertainties. Therefore, in this paper, the inventory balance equation is represented by a continuous-time model with Markov jump process to take into account machines breakdown. The objective is to minimize the... 

    Optimal tracking control of an underactuated container ship based on direct Gauss Pseudospectral Method

    , Article Scientia Iranica ; Vol. 21, issue. 6 , 2014 Ghorbani, M. T ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, the problem of optimal tracking control for a container ship is addressed. The multi-input-multi-output nonlinear model of the S175 container ship is well established in the literature and represents a challenging problem for control design, where the design requirement is to follow a commanded maneuver at a desired speed. To satisfy the constraints on the states and the control inputs of the vessel nonlinear dynamics and minimize the heading error, a nonlinear optimal controller is formed. To solve the resulted nonlinear constrained optimal control problem, the Gauss Pseudospectral Method (GPM) is used to transcribe the optimal control problem into a Nonlinear Programming... 

    Dynamic production planning model: A dynamic programming approach

    , Article International Journal of Advanced Manufacturing Technology ; Volume 67, Issue 5-8 , 2013 , Pages 1675-1681 ; 02683768 (ISSN) Khaledi, H ; Reisi Nafchi, M ; Sharif University of Technology
    2013
    Abstract
    Production planning is one of the most important issues in manufacturing. The nature of this problem is complex and therefore researchers have studied it under several and different assumptions. In this paper, applied production planning problem is studied in a general manner and it is assumed that there exists an optimal control problem that its production planning strategy is a digital controller and must be optimized. Since this is a random problem because of stochastic values of sales in future, it is modeled as a stochastic dynamic programming and then it is transformed to a linear programming model using successive approximations. Then, it is proved that these two models are... 

    Lateral solutions for optimizing holding costs in job shops

    , Article International Journal of Advanced Manufacturing Technology ; Volume 56, Issue 1-4 , 2011 , Pages 261-272 ; 02683768 (ISSN) Arasteh, A ; Aliahmadi, A ; Sefidkoohi, H. M ; Omran, M. M ; Sharif University of Technology
    Abstract
    Queuing networks present as beneficial models for a category of problems emerging in modern manufacturing systems. As the optimal control problem for queuing networks in familiar to be difficult, an important topic of research during the last two decades has been the growth of difficult estimations, and the use of these estimations to control optimal controls. Flexible moderations are an important class of such estimations that have received much consideration in recent years. The central objective of this paper is to determine the utilization of flexible moderations in solving a diversity of scheduling problems. In this paper, we investigate the role of flexible moderations in solving... 

    RedQueen: an online algorithm for smart broadcasting in social networks

    , Article WSDM 2017 - Proceedings of the 10th ACM International Conference on Web Search and Data Mining, 2 February 2017 ; 2017 , Pages 51-60 ; 9781450346757 (ISBN) Zarezade, A ; Upadhyay, U ; Rabiee, H. R ; Gomez Rodriguez, M ; Sharif University of Technology
    Association for Computing Machinery, Inc  2017
    Abstract
    Users in social networks whose posts stay at the top of their followers' feeds the longest time are more likely to be noticed. Can we design an online algorithm to help them decide when to post to stay at the top? In this paper, we address this question as a novel optimal control problem for jump stochastic differential equations. For a wide variety of feed dynamics, we show that the optimal broadcasting intensity for any user is surprisingly simple - it is given by the position of her most recent post on each of her follower's feeds. As a consequence, we are able to develop a simple and highly efficient online algorithm, RedQueen, to sample the optimal times for the user to post.... 

    State waypoint approach to continuous-time nonlinear optimal control problems

    , Article Asian Journal of Control ; Volume 11, Issue 6 , 2009 , Pages 669-676 ; 15618625 (ISSN) Honarvarmahjoobin, M. H ; Tazaki, Y ; Imura, J. I ; Sharif University of Technology
    2009
    Abstract
    In this paper, we propose an optimal control technique for a class of continuous-time nonlinear systems. The key idea of the proposed approach is to parametrize continuous stale trajectories by sequences of a finite number of intermediate target states; namely, waypoint sequences. It is shown that the optimal control problem for transferring the state from one waypoint to the next is given an explicit-form suboptimal solution, by means of linear approximation. Thus the original continuous-time nonlinear control problem reduces to a finite-dimensional optimization problem of waypoint sequences. Any efficient numerical optimization method, such as the interior-reflection Newton method, can be... 

    Developing a new approach for (biological) optimal control problems: Application to optimization of laccase production with a comparison between response surface methodology and novel geometric procedure

    , Article Mathematical Biosciences ; Volume 309 , 2019 , Pages 23-33 ; 00255564 (ISSN) Ghobadi Nejad, Z ; Borghei, S. M ; Yaghmaei, S ; Hasan Zadeh, A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    Laccase production by indigenous fungus, Phanerochaete chrysosporium, requires solving optimal problems to determine the maximum production of the enzyme within a definite time period and conditions specified in the solid-state fermentation process. For this purpose, parallel to response surface methodology, an analytical approach has been proposed based on the advanced concepts of Poisson geometry and Lie groups, which lead to a system of the Hamiltonian equations. Despite the dating of the Hamiltonian approach to solving biological problems, the novelty of this paper is based on the expression of a Hamiltonian system in notions of Poisson geometry, Lie algebras and symmetry groups and...