Loading...
Search for: optimal-trajectory-design
0.006 seconds

    Optimal trajectory design to Halo orbits via pseudo-invariant manifolds using a nonlinear four body formulation

    , Article Acta Astronautica ; Volume 110 , 2015 , Pages 115-128 ; 00945765 (ISSN) Sayanjali, M ; Pourtakdoust, S. H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This paper investigates the problem of optimal transfer trajectory design towards the L2 centered Halo orbit of the Sun-Earth three body system, where the initial launch is to start from a low Earth parking orbit (LEO). The proposed optimal transfer trajectory consists of an active part with low-thrust propulsion and a passive coasting part with no thrust or fuel consumption. In this respect a pseudo-stable manifold (SM) is initially determined through backward time integration of the bicircular four body (BCFB) equations of motion, whose initial states are obtained via stable manifolds of the restricted three body problem (R3BP). The optimal transfer trajectories are extracted via a hybrid... 

    Optimal-time quadcopter descent trajectories avoiding the vortex ring and autorotation states

    , Article Mechatronics ; Volume 68 , 2020 Talaeizadeh, A ; Antunes, D ; Nejat Pishkenari, H ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    It is well-known that helicopters descending fast may enter the so-called Vortex Ring State (VRS), a region in the velocity space where the blade's lift differs significantly from regular regions and high amplitude fluctuations are often present. These fluctuations may lead to instability and, therefore, this region is avoided, typically by increasing the horizontal speed. This paper researches this phenomenon in the context of small-scale quadcopters. The region corresponding to the VRS is identified by combining first-principles modeling and wind-tunnel experiments. Moreover, we propose that the so-called Windmill-Brake State (WBS) or autorotation region should also be avoided for...