Loading...
Search for: optimized-stiffness
0.01 seconds

    Fundamentals of optimum performance-based design for dynamic excitations

    , Article Scientia Iranica ; Volume 12, Issue 4 , 2005 , Pages 368-378 ; 10263098 (ISSN) Moghaddam, H ; Hajirasouliha, I ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    This paper presents a new method for optimization of the dynamic response of structures subjected to seismic excitation. This method is based on the concept of uniform distribution of deformation. In order to obtain the optimum distribution of structural properties, an iterative optimization procedure has been adopted. In this approach, the structural properties are modified so that inefficient material is gradually shifted from strong to weak areas of a structure, This process is continued until a state of uniform deformation is achieved. It is shown that, in general, for a MDOF structure, there exists a specific pattern for distribution of structural properties that results in an optimum... 

    Floating bridge modeling and analysis

    , Article Scientia Iranica ; Volume 12, Issue 2 , 2005 , Pages 199-206 ; 10263098 (ISSN) Seif, M. S ; Paein Koulaei, R. T ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    This paper presents an overview of a study on the design and analysis aspects of the Lake Urmia Bridge in Iran. For years there have been several detailed investigations on this subject. Here, these alternatives are discussed and, then, results of analyses for a proposed solution, a floating bridge, are presented. These aspects include environmental loads, structure and the mooring system. © Sharif University of Technology  

    Stress-constrained topology optimization: A topological level-set approach

    , Article Structural and Multidisciplinary Optimization ; Volume 48, Issue 2 , August , 2013 , Pages 295-309 ; 1615147X (ISSN) Suresh, K ; Takalloozadeh, M ; Sharif University of Technology
    2013
    Abstract
    The objective of this paper is to introduce and demonstrate an algorithm for stress-constrained topology optimization. The algorithm relies on tracking a level-set defined via the topological derivative. The primary advantages of the proposed method are: (1) the stresses are well-defined at all points within the evolving topology, (2) the finite-element stiffness matrices are well-conditioned, making the analysis robust and efficient, (3) the level-set is tracked through a simple iterative process, and (4) the stress constraint is precisely satisfied at termination. The proposed algorithm is illustrated through numerical experiments in 2D and 3D  

    Optimization of a passenger occupied seat with suspension system exposed to vertical vibrations using genetic algorithms

    , Article Journal of Vibroengineering ; Volume 15, Issue 2 , 2013 , Pages 979-991 ; 13928716 (ISSN) Afkar, A ; Javanshir, I ; Ahmadian, M. T ; Ahmadi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a biomechanical model with seven degrees of freedom as a seated human exposed to vertical vibration. Experimental data is used to find the stiffness and damping parameters of the model. The data includes values of seat to head transmissibility, driving point mechanical impedance and apparent mass. The multi-objective function is used to obtain theoretical results similar to three different experimental cases. The unknown coefficients are calculated by a genetic algorithm. Improved results, in comparison with previous models, are achieved from the presented model. Next, this modified model is assembled on a quarter car and parameters of the cushion and the suspension... 

    Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms

    , Article Structural Design of Tall and Special Buildings ; Volume 21, Issue 1 , 2012 , Pages 57-76 ; 15417794 (ISSN) Mohebbi, M ; Joghataie, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the capabilities of tuned mass dampers (TMDs) for the mitigation of response of nonlinear frame structures subjected to earthquakes have been studied. To determine the optimal parameters of a TMD, including its mass, stiffness and damping, we developed an optimization algorithm based on the minimization of a performance index, defined as a function of the response of the nonlinear structure to be controlled. Distributed genetic algorithm has been used to solve the optimization problem. For illustration, the method has been applied to the design of a linear TMD for an eight-story nonlinear shear building with bilinear hysteretic material behavior subjected to earthquake. The... 

    Optimal target impedance selection of the robot interacting with human

    , Article Advanced Robotics ; Volume 31, Issue 8 , 2017 , Pages 428-440 ; 01691864 (ISSN) Taherifar, A ; Vossoughi, G ; Selk Ghafari, A ; Sharif University of Technology
    Robotics Society of Japan  2017
    Abstract
    Human–robot interaction is an important issue in robotic researches which is the key in many rehabilitation and robot-assisted therapy applications. Impedance control can properly handle soft interaction of robots with the environment. Optimal target impedance selection can increase the performance of the overall system and guarantee the stability. The target impedance cannot be selected without proper knowledge about the stiffness and inertia parameters of the human. In this paper, a systematic analysis is done to introduce a method to estimate the human stiffness and consequently adjust the robot target stiffness. Then, particle swarm optimization is used to find the damping and inertia... 

    Multi-objective optimization of piezoelectric microactuator using genetic algorithms

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 13, Issue PART B , 2009 , Pages 723-730 ; 9780791848746 (ISBN) Esteki, H ; Hasannia, A ; Sharif University of Technology
    2009
    Abstract
    In flex-tensional piezoactuators, due to the low displacement of piezostacks, a compliant mechanism is used to amplify displacement of piezostack. In this paper, optimization of a compliant mechanism with corner-filleted flexure hinges is carried out using real-coded genetic algorithms (GAs) to avoid trapping in local optimums. The objective functions are displacement amplification and stiffness of mechanism and design variables are cross-sectional size and material used. The constraints which are applied on mechanism are based on piezostack dimensions and manufacturing limits. Displacement amplification and stiffness are calculated using strain energy and Castigliano's displacement theorem.... 

    Operation of tapered steel slit dampers in steel structures using the endurance time method

    , Article Civil-Comp Proceedings ; 2013 , Volume 102 ; 17593433 (ISSN) ; 9781905088577 (ISBN) Mirjalili, A ; Estekanchi, H.E ; Fakhri, M ; Sharif University of Technology
    Civil-Comp Press  2013
    Abstract
    Based on special properties of metal dampers such as high energy dissipation, stable hysteric cycles, simple application, low cost, insensitivity to changes of temperature and the ability to substitute after the occurrence of earthquakes, they are being used for structural control. One of these metal dampers which has been of special interest is the tapered steel slit damper (TSS). When shear forces are applied, this damper yields and enters the plastic zone. The TSS damper is made of pieces of standard wide flanges where slits have been extracted from their web. These dampers are connected to the top of the chevron braces and under the middle of the beams. In the endurance time (ET) method... 

    Multi-objective optimization of vehicle floor panel with a laminated structure based on V-shape development model and Taguchi-based grey relational analysis

    , Article Structural and Multidisciplinary Optimization ; Volume 65, Issue 3 , 2022 ; 1615147X (ISSN) Salmani, H ; Khalkhali, A ; Ahmadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this paper, the V-shape development model approach for designing an automotive floor panel made by laminated structure is investigated to attain the best trade-off between the system and subsystem level requirements while improving the local and global performance of the vehicle. For this purpose, the bending and torsional stiffness of the body structure, as well as mass, strength, and vibration attenuation of the floor panel, are considered as design objectives at the system and subsystem levels. A multi-objective discrete optimization of a laminated configuration is performed using the Taguchi-based grey relational analysis. Material grades and thicknesses of the sandwich panel face...