Search for: oral-administration
0.005 seconds

    Nanobiomaterials set to revolutionize drug-delivery systems for the treatment of diabetes: State-of-the-art

    , Article Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials ; 2016 , Pages 487-514 ; 9780323428897 (ISBN) Yazdanpanah, A ; Rezvani, Z ; Ramedani, A ; Gholipourmalekabadi, M ; Chauhan, N. P. S ; Moztarzadeh, S ; Urbanska, A ; Mozafari, M ; Sharif University of Technology
    Elsevier Inc  2016
    Diabetes can result when the accurate control of insulin levels fails in the body. As a result, insulin has been conventionally administered for the treatment of diabetes mainly through subcutaneous injection. There have been several attempts to administer insulin orally. However, the oral bioavailability of insulin is strictly limited, mainly by low permeability across biological membranes. Advances in biotechnology and nanotechnology have recently led to the discovery of several new approaches for the delivery of drugs. In this concept, nanobiomaterials have been shown to be promising candidates for oral insulin delivery. This chapter describes the recent advances and future prospects of... 

    Micro and nanoscale technologies in oral drug delivery

    , Article Advanced Drug Delivery Reviews ; Volume 157 , 2020 , Pages 37-62 Ahadian, S ; Finbloom, J. A ; Mofidfar, M ; Diltemiz, S. E ; Nasrollahi, F ; Davoodi, E ; Hosseini, V ; Mylonaki, I ; Sangabathuni, S ; Montazerian, H ; Fetah, K ; Nasiri, R ; Dokmeci, M. R ; Stevens, M. M ; Desai, T. A ; Khademhosseini, A ; Sharif University of Technology
    Elsevier B.V  2020
    Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies.... 

    Oral administration of lithium chloride ameliorate spinal cord injury-induced hyperalgesia in male rats

    , Article PharmaNutrition ; Volume 21 , 2022 ; 22134344 (ISSN) Rahimi, G ; Mirsadeghi, S ; Rahmani, S ; Izadi, A ; Ghodsi, Z ; Ghodsi, S. M ; Rahimi Movaghar, V ; Kiani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Background: Numerous studies have described the neuroprotective effect of lithium in spinal cord injury in addition to its ameliorative impact on pain sensation. In the present study, we aim to examine the efficacy of 85 mg/kg as well as 50 mg/kg dosage of the lithium chloride (LiCl) through oral consumption in spinal cord injured rats and their effect on gene expression of three candidate genes, corresponding to the hyper-sensitization. Methods: Adult Wistar (male) rats were divided into four experimental groups: control; oral administration of LiCl with 85 mg/kg and 50 mg/kg dosage; and 10 % sucrose receiver as the vehicle. BBB and heat plantar tests were performed weekly throughout four... 

    Liquid-liquid-liquid microextraction followed by HPLC with UV detection for quantitation of ephedrine in urine

    , Article Journal of Separation Science ; Volume 31, Issue 18 , 2008 , Pages 3212-3217 ; 16159306 (ISSN) Bagheri, H ; Khalilian, F ; Ahangar, L. E ; Sharif University of Technology
    Liquid-liquid-liquid microextraction (LLLME) in combination with HPLC and UV detection has been used as a sensitive method for the determination of ephedrine in urine samples. Extraction process was performed in a homemade total glass vial without using a Teflon ring, usually employed. Ephedrine was first extracted from 3.5 mL of urine sample (pH 12) into a microfilm of toluene/benzene (50:50). The analyte was subsequently back extracted into an acidic microdrop solution (pH 2) suspended in the organic phase. The extract was then injected into the HPLC system directly. An enrichment factor of 137 along with a good sample clean-up was obtained under the optimized conditions. The calibration...