Loading...
Search for:
oral-administration
0.005 seconds
Nanobiomaterials set to revolutionize drug-delivery systems for the treatment of diabetes: State-of-the-art
, Article Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials ; 2016 , Pages 487-514 ; 9780323428897 (ISBN) ; Rezvani, Z ; Ramedani, A ; Gholipourmalekabadi, M ; Chauhan, N. P. S ; Moztarzadeh, S ; Urbanska, A ; Mozafari, M ; Sharif University of Technology
Elsevier Inc
2016
Abstract
Diabetes can result when the accurate control of insulin levels fails in the body. As a result, insulin has been conventionally administered for the treatment of diabetes mainly through subcutaneous injection. There have been several attempts to administer insulin orally. However, the oral bioavailability of insulin is strictly limited, mainly by low permeability across biological membranes. Advances in biotechnology and nanotechnology have recently led to the discovery of several new approaches for the delivery of drugs. In this concept, nanobiomaterials have been shown to be promising candidates for oral insulin delivery. This chapter describes the recent advances and future prospects of...
Micro and nanoscale technologies in oral drug delivery
, Article Advanced Drug Delivery Reviews ; Volume 157 , 2020 , Pages 37-62 ; Finbloom, J. A ; Mofidfar, M ; Diltemiz, S. E ; Nasrollahi, F ; Davoodi, E ; Hosseini, V ; Mylonaki, I ; Sangabathuni, S ; Montazerian, H ; Fetah, K ; Nasiri, R ; Dokmeci, M. R ; Stevens, M. M ; Desai, T. A ; Khademhosseini, A ; Sharif University of Technology
Elsevier B.V
2020
Abstract
Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies....
Liquid-liquid-liquid microextraction followed by HPLC with UV detection for quantitation of ephedrine in urine
, Article Journal of Separation Science ; Volume 31, Issue 18 , 2008 , Pages 3212-3217 ; 16159306 (ISSN) ; Khalilian, F ; Ahangar, L. E ; Sharif University of Technology
2008
Abstract
Liquid-liquid-liquid microextraction (LLLME) in combination with HPLC and UV detection has been used as a sensitive method for the determination of ephedrine in urine samples. Extraction process was performed in a homemade total glass vial without using a Teflon ring, usually employed. Ephedrine was first extracted from 3.5 mL of urine sample (pH 12) into a microfilm of toluene/benzene (50:50). The analyte was subsequently back extracted into an acidic microdrop solution (pH 2) suspended in the organic phase. The extract was then injected into the HPLC system directly. An enrichment factor of 137 along with a good sample clean-up was obtained under the optimized conditions. The calibration...