Loading...
Search for: organic-polymers
0.006 seconds
Total 63 records

    Supramolecular assembly through intermolecular n → π∗ interactions through a coordinated perrhenate formed: Via superoxidation of Re(i) to Re(vii) in the formation of substituted Re(CO)3complexes bearing Diimine ligands

    , Article CrystEngComm ; Volume 22, Issue 39 , September , 2020 , Pages 6448-6452 Kia, R ; Taghavi, T ; Raithby, P. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    We report the structural, spectroscopic, and computational studies of two new Re(i) tricarbonyl complexes bearing 2,3,6,7-tetraphenyl-1,4,5,8-tetraazaphenanthrene (Ph4TAP) and 4,5-diazafluoren-9-one (dafone) having a coordinated perrhenate group obtained via in situ superoxidation of Re(i) to Re(vii); intramolecular and intermolecular n → π∗ interactions are dominant and stabilize the molecular geometry and crystal packing. This journal is © The Royal Society of Chemistry  

    Soluble butyl substituted copper phthalocyanine as alternative hole-transporting material for solution processed perovskite solar cells

    , Article Electrochimica Acta ; Volume 212 , 2016 , Pages 929-933 ; 00134686 (ISSN) Sfyri, G ; Chen, Q ; Lin, Y. W ; Wang, Y. L ; Nouri, E ; Xu, Z. X ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Copper phthalocyanine can effectively act as alternative small molecule hole transporting material in perovskite solar cells. In order to produce solution processed devices, a soluble copper phtalocyanine has been synthesized by n-butyl substitution and it was compared to commercially available tert-butyl substituted copper phthalocyanine. It was found that the configuration of the butyl chain plays a very important role in film conductivity and in the subsequent efficiency of solar cells, n-bytyl derivative being the most effective hole transporter. Such a result is due to the fact that n-butyl derivative allows better packing of the molecules in the film and stronger π-π interaction  

    Synthesis and evaluation of pH and thermosensitive pectin-based superabsorbent hydrogel for oral drug delivery systems

    , Article Starch/Staerke ; Volume 61, Issue 3-4 , 2009 , Pages 161-172 ; 00389056 (ISSN) Pourjavadi, A ; Barzegar, S ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study was to produce intelligent pectin-based superabsorbent polymers (SAP) to be used as pH- and thermosensitive carriers for the controlled delivery of non-steroidal anti-inflammatory drugs (NSAIDs). The superabsorbent formation was confirmed by Fourier transform infrared spectroscopic (FT-IR) and scanning electron microscopy (SEM). The effects of pH, ionic strength, temperature, porosity, particle size and levels of loaded drug on drug release profile in various surrounding media were investigated. Each sample was well characterized through swelling studies. The molecular weight between crosslinks (M̄C), crosslinking density (ve) polymer-solvent interaction parameter... 

    Facile synthesis of a recyclable Pd-rGO/CNT/CaFe2O4 nanocomposite with high multifunctional photocatalytic activity under visible light irradiation

    , Article Journal of Materials Chemistry A ; Volume 7, Issue 27 , 2019 , Pages 16257-16266 ; 20507488 (ISSN) Bagherzadeh, M ; Kaveh, R ; Mahmoudi, H ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    We report a facile method to synthesize a magnetically separable Pd-rGO/CNT/CaFe2O4 photocatalyst. The incorporation of CNTs into rGO can form a conductive network structure to bridge the gaps between rGO sheets. This conductive network can prevent the restacking of GO nanosheets during the reduction process. Also, for photocatalysis, the aforementioned conjugated network can provide rapid electronic conducting channels. It was found that the Pd-rGO/CNT/CaFe2O4 nanocomposite is an efficient photocatalyst for the Heck-Mizoroki coupling reaction under irradiation of visible light. Interestingly, the electrons which are excited by the photons can be transferred to the palladium nanoparticles... 

    Facile synthesis of a recyclable Pd-rGO/CNT/CaFe2O4 nanocomposite with high multifunctional photocatalytic activity under visible light irradiation

    , Article Journal of Materials Chemistry A ; Volume 7, Issue 27 , 2019 , Pages 16257-16266 ; 20507488 (ISSN) Bagherzadeh, M ; Kaveh, R ; Mahmoudi, H ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    We report a facile method to synthesize a magnetically separable Pd-rGO/CNT/CaFe2O4 photocatalyst. The incorporation of CNTs into rGO can form a conductive network structure to bridge the gaps between rGO sheets. This conductive network can prevent the restacking of GO nanosheets during the reduction process. Also, for photocatalysis, the aforementioned conjugated network can provide rapid electronic conducting channels. It was found that the Pd-rGO/CNT/CaFe2O4 nanocomposite is an efficient photocatalyst for the Heck-Mizoroki coupling reaction under irradiation of visible light. Interestingly, the electrons which are excited by the photons can be transferred to the palladium nanoparticles... 

    Tight-binding description of patterned graphene

    , Article Semiconductor Science and Technology ; Volume 23, Issue 7 , 2008 ; 02681242 (ISSN) Gharekhanlou, B ; Alavi, M ; Khorasani, S ; Sharif University of Technology
    2008
    Abstract
    The existence of an energy gap of graphene is vital as far as nano-electronic applications such as nano-transistors are concerned. In this paper, we present a method for introducing arbitrary energy gaps through breaking the symmetry point group of graphene. We investigate the tight-binding approximation for the dispersion of π and π* electronic bands in patterned graphene including up to five nearest neighbors. As we show by applying special defects in graphene structure, an energy gap appears at Dirac points and the effective mass of fermions also becomes a function of the number of defects per unit cell. © 2008 IOP Publishing Ltd  

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol-gel technique

    , Article Ceramics International ; Vol. 40, Issue 3 , 2014 , pp. 4193-4201 ; ISSN: 02728842 Naghibi, S ; Faghihi Sani, M. A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    TiO2 nanoparticles were synthesized by hydrothermal assisted sol-gel technique. The preparation parameters including pH value, the amount of water, titanium tetra isopropoxide content, temperature and time of hydrothermal process were investigated by Taguchi statistical experiments to determine the influence of synthesizing variables on the optimal conditions and to realize the highest degree of crystallinity or smallest crystallite size. X-ray diffraction (XRD) analysis and direct band gap energy (Eg) values, measured via diffuse reflectance spectra (DRS), proved that all the samples consist of anatase as a unique phase. Transmission electron microscopy (TEM) and specific surface area... 

    Hydrophobic nanocarriers embedded in a novel dual-responsive poly(N-isopropylacrylamide)/chitosan/(cyclodextrin) nanohydrogel

    , Article Journal of Polymer Research ; Volume 20, Issue 10 , 2013 ; 1572-8935 (Online ISSN) Bashari, A ; Hemmatinejad, N ; Pourjavadi, A ; Sharif University of Technology
    2013
    Abstract
    The incorporation of modified β-cyclodextrin (β-CD) into a poly(N-isopropylacrylamide) (PNIPAAm)/chitosan (PNCS) nanohydrogel was studied. β-CD was functionalized with acrylic groups, with different numbers of vinyl bonds added per β-CD molecule. The surfactant-free dispersion polymerization (SFDP) semi-batch method was used to synthesize the nanohydrogel. Increasing the number of vinyl groups per β-CDAC (β-CD acrylate) molecule induced the formation of smaller nanogels with diameters ranging from 142 to 68 nm. The cyclodextrin-modified dual-responsive nanogels obtained presented an LCST (lower critical solution temperature) in aqueous medium at around 31 C. The incorporation of β-CDAC into... 

    Simultaneously synthesis and encapsulation of metallic nanoparticles using linear-dendritic block copolymers of poly (ethylene glycol)-poly (citric acid)

    , Article Key Engineering Materials, 8 July 2010 through 9 July 2010 ; Volume 478 , July , 2011 , Pages 7-12 ; 10139826 (ISSN) ; 9783037851357 (ISBN) Naeini, A. T ; Vossoughi, M ; Adeli, M ; Sharif University of Technology
    2011
    Abstract
    Linear-dendritic triblock copolymers of linear poly(ethylene glycol) and hyperbranched poly(citric acid) (PCA-PEG-PCA) were used as the reducing and capping agents to encapsulate gold and silver nanoparticles (AuNPs and AgNPs). PCA-PEG-PCA copolymers in four different molecular weights were synthesized using 2, 5, 10 and 20 citric acid/PEG molar ratios and were called A 1, A 2, A 3 and A 4, respectively. Nanoparticles were encapsulated simultaneously during the preparation process. AuNPs were simply synthesized and encapsulated by addition a boiling aqueous solution of HAuCl 4 to aqueous solutions of A 1, A 2, A 3 and A 4. In the case of silver, an aqueous solution of AgNO 3 was reduced... 

    Comparative studies on Ag3PO4/BiPO4-metal-organic framework-graphene-based nanocomposites for photocatalysis application

    , Article Applied Surface Science ; Volume 351 , October , 2015 , Pages 216-224 ; 01694332 (ISSN) Mohaghegh, N ; Tasviri, M ; Rahimi, E ; Gholami, M. R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    For the first time, we report novel Ag3PO4/BiPO4 (AB)-graphene-based photocatalysts. The fabricated nanocomposites were characterized by various techniques. The photocatalytic properties of the prepared catalysts were evaluated by the photodegradation of Atrazine herbicide under both visible and UV light irradiation. Atrazine concentration was determined using the spectrophotometric method according to the Konig's reaction by monitoring the absorbance at 470 nm wavelength during the photodegradation process. Both degradation rate and efficiency using graphene (GR)-based nanocomposites are found to be much better than using pure AB. Atrazine photodegradation displayed that the AB supporting... 

    The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells

    , Article Electrochimica Acta ; Volume 222 , 2016 , Pages 1417-1423 ; 00134686 (ISSN) Nouri, E ; Wang, Y. L ; Chen, Q ; Xu, J. J ; Dracopoulos, V ; Sygellou, L ; Xu, Z. X ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Perovskite solar cells have been constructed under ambient conditions by using 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) mixed with a small quantity of soluble tetra-n-butyl substituted copper phthalocyanine as hole transporting material. The introduction of the phthalocyanine derivative resulted in an impressive increase of cell efficiency, which changed from 10.4% in the absence to 15.4% in the presence of phthalocyanine. This effect is related to the creation of deep traps in the hole transporting phase which block back-travelling electrons as well as to the improvement of the structural quality of the spiro-OMeTAD film in the presence of... 

    The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells

    , Article Electrochimica Acta ; 2016 ; 00134686 (ISSN) Nouri, E ; Wang, Y. L ; Chen, Q ; Xu, J. J ; Dracopoulos, V ; Sygellou, L ; Xu, Z. X ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Perovskite solar cells have been constructed under ambient conditions by using 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) mixed with a small quantity of soluble tetra-n-butyl substituted copper phthalocyanine as hole transporting material. The introduction of the phthalocyanine derivative resulted in an impressive increase of cell efficiency, which changed from 10.4% in the absence to 15.4% in the presence of phthalocyanine. This effect is related to the creation of deep traps in the hole transporting phase which block back-travelling electrons as well as to the improvement of the structural quality of the spiro-OMeTAD film in the presence of... 

    Carbon nanotube-graft-block copolymers containing silver nanoparticles

    , Article International Journal of Nanoscience ; Volume 8, Issue 6 , 2009 , Pages 533-541 ; 0219581X (ISSN) Adeli, M ; Sepahvand, R ; Bahari, A ; Astinchap, B ; Sharif University of Technology
    Abstract
    Polycaprolactone-polylactide block copolymers (PCL-block-PLA) were grafted onto filled multi-wall carbon nanotubes (MWCNT) successfully. In this synthesis, MWCNTs were opened and functionalized, and then they were filled by silver nanoparticles. The filled MWCNT were used as macroinitiator for ring opening polymerization of ε-caprolactone and L-lactide. Then the end hydroxyl functional groups of MWCNT-graft-PCL or MWCNT-graft-PLA were used as initiator for ring opening polymerization of lactide and ε-caprolactone and MWCNT-graft-PCL-block-PLA or MWCNT-graft-PLA-block-PCL were obtained, respectively. Length of grafted copolymer chains onto the MWCNT was controlled using CNT/monomer ratio.... 

    Shape-controlled silver NPs for shape-dependent biological activities

    , Article Micro and Nano Letters ; Volume 12, Issue 9 , 2017 , Pages 647-651 ; 17500443 (ISSN) Sadeghi, F ; Yazdanpanah, A ; Abrishamkar, A ; Moztarzadeh, F ; Ramedani, A ; Pouraghaie, S ; Shirinzadeh, H ; Samadikuchaksaraei, A ; Chauhan, N. P. S ; Hopkinson, L ; Sefat, F ; Mozafari, M ; Sharif University of Technology
    Abstract
    The most important issue during synthesis of nanoparticles (NPs) is to avoid particle agglomeration and adhesion. There have been several attempts to use special substances such as organic surfactants, polymers and stable ligands for this purpose. In this study, silver NPs were synthesised with and without gelatin macromolecules, as a green natural biopolymer, which resulted in NPs with varying shapes and sizes. The effect of morphological characteristics on the antibacterial and antifungal properties of the synthesised NPs were studied, by comparing Gram-negative (Escherichia coli) versus Gram-positive (Staphylococcus aureus) bacteria as well as fungi (Candida albicans) by calculation of... 

    Introduction of graphene oxide as buffer layer in perovskite solar cells and the promotion of soluble n-butyl-substituted copper phthalocyanine as efficient Hole transporting material

    , Article Electrochimica Acta ; Volume 233 , 2017 , Pages 36-43 ; 00134686 (ISSN) Nouri, E ; Wang, Y. L ; Chen, Q ; Xu, J. J ; Paterakis, G ; Dracopoulos, V ; Xu, Z. X ; Tasis, D ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Abstract
    Organometal halide perovskite solar cells have been constructed using soluble tetra-n-butyl-copper phthalocyanine as hole transporting material. Devices were constructed and characterized under ambient conditions of 50–60% ambient humidity. Soluble copper phthalocyanine gave a modest PCE of 7.3% but when a buffer layer of either Al2O3 or graphene oxide was introduced between the perovskite and the hole transporting layer the cell efficiency extensively increased and reached 14.4% in the presence of graphene oxide. Corresponding data obtained by employing the standard spiro-OMeTAD as hole transporter gave equivalent performance. Combination then of tetra-n-butyl-copper phthalocyanine with... 

    Specific picomolar detection of a breast cancer biomarker her-2/neu protein in serum: electrocatalytically amplified electroanalysis by the aptamer/peg-modified electrode

    , Article ChemElectroChem ; Volume 4, Issue 4 , 2017 , Pages 872-879 ; 21960216 (ISSN) Salimian, R ; Kékedy Nagy, L ; Ferapontova, E. E ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    Specific and sensitive electroanalysis of blood-circulating protein cancer biomarkers is often complicated by interference from serum proteins nonspecifically adsorbing at the biosensing interface and masking specific reactions of interest. Here, we have developed an electrocatalytically amplified assay for specific and sensitive analysis of human epidermal growth factor receptor-2 (HER-2/neu, a protein cancer biomarker over-expressed in breast cancers) that allows us to avoid both the interference from bovine serum albumin (BSA) and electrocatalytic amplification of the signal stemming from the specific aptamer−HER-2/neu binding. A HER-2/neu-specific thiolated aptamer sequence was... 

    Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study

    , Article Journal of Porous Materials ; Volume 24, Issue 1 , 2017 , Pages 165-178 ; 13802224 (ISSN) Behvandi, A ; Safekordi, A. A ; Khorasheh, F ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In this work, the adsorption of benzoic acid (BA) over metal organic framework of chromium-benzenedicarboxylates (MIL-101) is reported for the first time. The influences of pH, contact time, initial concentration, and temperature of BA solution on the adsorption behavior were investigated. The Langmuir adsorption isotherm was adequate to represent the experimental data (R2 > 0.99) and the adsorption kinetics was well-represented by a pseudo-second order kinetic model (R2 > 0.96). The zeta potential of MIL-101 decreased with increasing pH confirming the importance of electrostatic interactions between MIL-101 and BA as well as the importance of the large pore volume (1.32 m3/g) and large... 

    Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media

    , Article Applied Surface Science ; Volume 445 , 2018 , Pages 424-436 ; 01694332 (ISSN) Molavi, H ; Hakimian, A ; Shojaei, A ; Raeiszadeh, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A highly water stable metal-organic framework (MOF) based on zirconium, i.e. UiO-66, was synthesized and then employed to adsorptive removal of an anionic dye, methyl orange (MO), and a cationic dye, methylene blue (MB), from aqueous solution. In this work, for the first time, the long term stability of UiO-66 in water was investigated for 12 months. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and N2 adsorption/desorption analysis were employed to monitor the textural alteration of UiO-66 during water aging. The results indicated that the structure of UiO-66 was mostly retained and its adsorption capacity toward dyes exhibited minor loss after long term water...