Loading...
Search for: osteoblast-proliferation
0.004 seconds

    Simultaneous evaluation of magnesia and silica contents’ effect on in-vitro bioactivity of novel bioglasses in the SiO2-CaO-MgO system

    , Article Transactions of the Indian Ceramic Society ; Volume 75, Issue 1 , 2016 , Pages 7-11 ; 0371750X (ISSN) Eslami, M ; Mahdieh, Z ; Maddahi, V ; Shokrgozar, M. A ; Mehrjoo, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    In this study, bioglasses in SiO2-CaO-MgO system were synthesized through sol-gel method and the effect of silica and magnesia contents on in-vitro bioactivity of the bioglasses were investigated. XRD patterns showed an amorphous structure after heat treatment at 600°C for 2 h for all glasses and also indicated that after immersion in SBF, apatite particles precipitated on glass surfaces and the rate of apatite formation decreased with increasing Mg/Ca ratio. On the other hand, the apatite formation rate was enhanced with increasing the silica content. Furthermore, magnesia contents increased the compressive strength of the samples. According to SEM, higher Mg/Ca ratio led to increase in... 

    Pore control in SMA NiTi scaffolds via space holder usage

    , Article Materials Science and Engineering C ; Volume 32, Issue 5 , 2012 , Pages 1266-1270 ; 09284931 (ISSN) Ghasemi, A ; Hosseini, S. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    Porous NiTi shape memory alloy (SMA) was fabricated by sintering of compressed constituent elements pre-mixed with NaCl or urea spacer holders. Effect of spacer to metal volume-ratio (r S) on shape, size, distribution and openness of the voids was probed by optical metallography, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Differential scanning calorimetry (DSC) was used to determine the SMA transformation temperatures. Controllable void geometry helping osteoblast proliferation and bone cell growth was gained by addition of the spacers. At r S = 0.7, percentage of the open pores reached 52% while at r S = 1.43, interconnected pores with 200 to 500 μm diameter were... 

    Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 1 , Feb , 2011 , Pages 22-39 ; 15499634 (ISSN) Simchi, A ; Tamjid, E ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    Abstract
    This review covers the most recent developments of inorganic and organic-inorganic composite coatings for orthopedic implants, providing the interface with living tissue and with potential for drug delivery to combat infections. Conventional systemic delivery of drugs is an inefficient procedure that may cause toxicity and may require a patient's hospitalization for monitoring. Local delivery of antibiotics and other bioactive molecules maximizes their effect where they are required, reduces potential systemic toxicity and increases timeliness and cost efficiency. In addition, local delivery has broad applications in combating infection-related diseases. Polymeric coatings may present some...