Loading...
Search for: outlet-pressures
0.006 seconds

    LPG mass separation by vortex tube cascade and its economics

    , Article Applied Thermal Engineering ; Volume 148 , 2019 , Pages 1139-1147 ; 13594311 (ISSN) Majidi, D ; Alighardashi, H ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the present experimental study, the effect of operating parameters such as inlet and outlet pressure as well as inlet temperature on the mass separation capability of vortex tubes (VTs) for a gas mixture is investigated. Specifically, concentrating heavier components of a gas mixture in the hot outlet stream is considered. Proposing a semi-empirical index from the experimental study, the simulation of different arrangements of VTs, and the effect of recycling a portion of the hot outlet stream on its mass separation performance are investigated. Moreover, the proposed separation method by VTs is economically compared with commonly used methods by distillation columns and two-phase... 

    An experimental investigation of permeability impairment under dynamic flow conditions due to natural depletion in an Iranian oilfield

    , Article Petroleum Science and Technology ; Volume 31, Issue 3 , 2013 , Pages 250-261 ; 10916466 (ISSN) Khalifeh, M ; Bagherzadeh, H ; Bolouri, H ; Sharif University of Technology
    2013
    Abstract
    Asphaltene deposition is an issue that has received much attention since it has been shown to be the cause of major production problems. It leads to permeability reduction under the processes of natural depletion as well as hydrocarbon gas/CO2 injection. Though a great deal of researches have focused on studying permeability impairment in reservoir rocks, little is known about the asphaltene deposition mechanisms that control the permeability reduction for Iranian reservoirs. In this work, an experimental effort is made to investigate the permeability impairment of core samples of Iranian oil reservoirs. The experiments are performed on both sandstone and carbonate rock types at reservoir... 

    Numerical simulation of orifice cavitating flows using two-fluid and three-fluid cavitation models

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 58, Issue 6 , Sep , 2010 , Pages 505-526 ; 10407782 (ISSN) Darbandi, M ; Sadeghi, H ; Sharif University of Technology
    2010
    Abstract
    A number of numerical simulations is carried out to study the turbulent cavitating flow through an orifice. We use two different two-fluid (consisting of two interpenetrating liquid and vapor phases) and three-fluid (consisting of three liquid, vapor, and non-condensable gas phases) cavitation models to extend our study. We use the finite-volume method to solve the multiphase flow governing equations, the SIMPLEC algorithm to link the pressure and velocity equations, and the standard k- model to treat the turbulence closure problem. We fix the outlet pressure and change the inlet pressure suitably in our simulations. The discharge coefficient values obtained by the two chosen models are... 

    Physical aspects of rarefied gas flow in micro to nano scale geometries using DSMC

    , Article 39th AIAA Fluid Dynamics Conference, 22 June 2009 through 25 June 2009, San Antonio, TX ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Rarefied gas flow in micro/nano electro mechanical systems (MEMS/NEMS) does not perform exactly as that in macro-scale devices. The main goal in this study is to investigate mixed subsonic-supersonic flows in micro/nano channels and nozzles and to provide physical descriptions on their behaviors. We use DSMC method as a reliable numerical tool to extend our simulation. It is because the DSMC provides accurate solution for the Boltzmann equations over the entire range of rarefied flow regime or Knudsen numbers. As is known, the appearance of oblique/normal shocks at the inlet of a channel or a nozzle adds to the complexity of internal flow field analyses. We found some very unique physical... 

    Advancement in numerical study of gas flow and heat transfer in microscale

    , Article Journal of Thermophysics and Heat Transfer ; Volume 23, Issue 1 , 2009 , Pages 205-208 ; 08878722 (ISSN) Vakilipour, S ; Darbandi, M ; Sharif University of Technology
    2009
    Abstract
    The gas flow and heat transfer in a long microscopic channel with inlet-to-outlet pressure ratio equal to 8000 is studied. The second-order slip velocity and temperature jump boundary conditions are used, which are derived using a gas-surface interface mechanisms. The inlet is discretized to 19 nodes and they are clustered near the wall, while the longitudinal dimension in discretized to 1500 divisions using a nonuniform grid distribution. The current velocity profiles are found to have a good agreement with high-order analytical solutions, indicating that the current velocity perform second-order accuracy. The pressure distributions are found to perform higher nonlinearity as the...