Loading...
Search for: outlet-temperature
0.005 seconds

    Optimization of coil outlet temperature for producing maximum products in an olefin furnace

    , Article Petroleum Science and Technology ; Volume 31, Issue 6 , Feb , 2013 , Pages 596-602 ; 10916466 (ISSN) Ziarifar, E ; Fakhrhoseini, S. M ; Ghiassi, H ; Sharif University of Technology
    2013
    Abstract
    The bulk of the worldwide annual commercial production of ethylene is based on thermal cracking of petroleum hydrocarbons with steam. In this research, the effect of coil outlet temperature on the reactor yield has been studied. In order to investigate a reliable mathematical correlation, several data points were obtained by adjusting coil outlet temperature in a real plant. In order to investigate best coil outlet temperature, an objective function was represented. Based on the obtained mathematical correlation and the assumed objective function, it was found that best coil outlet temperature for investigating maximum income is 1,128 K  

    Best vortex tube cascade for highest thermal separation

    , Article International Journal of Refrigeration ; Volume 85 , 2018 , Pages 282-291 ; 01407007 (ISSN) Majidi, D ; Alighardashi, H ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The current study examines different arrangements of vortex tubes (VTs) to get higher performances for cooling and heating. The effects of thermo-physical parameters such as inlet feed temperature and inlet/outlet vortex tube pressure on generated temperature gradient are investigated. To estimate the cold outlet temperatures, the available equations in the literature are verified against our experimental data. Moreover, we propose a new equation to estimate the hot outlet temperature based on the upper limit of hot temperature (ULHT) and the lower limit of cold temperature (LLCT), verified with experimental data as well. Further, several arrangements are simulated to obtain the minimum cold... 

    Modeling of gas turbine combustor using dynamic neural network

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 10716947 (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Lahroodi, M ; Mozafari, A. A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    This paper presents an Artificial Neural Network (ANN) - based modeling technique for prediction of outlet temperature, pressure and mass flow rate of gas turbine combustor. ANN technique has been developed and used to model temperature, pressure and mass flow rate as a nonlinear function of fuel flow rate to the combustion chamber. Results obtained by present modeling are compared with those obtained by experiment. A quantitative analysis of modeling technique has been carried out using different evaluation indices; namely, Mean-Square-Quantization-Error (MSQE) and actual percentage error. The results show the effectiveness and capability of the proposed modeling technique with reasonable... 

    Performance analysis of a hybrid solar energy storage system

    , Article Journal of Mechanics ; Volume 27, Issue 2 , 2011 , Pages N19-N23 ; 17277191 (ISSN) Mohamadi, Z. M ; Zohoor, H ; Assadi, M. K ; Hamidi, A. A ; Sharif University of Technology
    2011
    Abstract
    In this work, a method for increasing the storage capability of a solar thermal energy system has been discussed. The system includes two tanks with the flexibility in choosing the best storage medium on the basis of the solar collector's outlet temperature. The results show that using such a hybrid storage system, the storable energy can be increased. Comparing the results with those for simple common storage systems, the extent of improvement was calculated. For verification of the results, a small pilot system was assembled. The test apparatus operated during 2008-2009 cold months and the parameters were recorded. Comparison of the theoretical and experimental results showed a good... 

    Modeling and control of a naphtha thermal cracking pilot plant

    , Article Industrial and Engineering Chemistry Research ; Volume 45, Issue 10 , 2006 , Pages 3574-3582 ; 08885885 (ISSN) Masoumi, M ; Shahrokhi, M ; Sadrameli, M ; Towfighi, J ; Sharif University of Technology
    2006
    Abstract
    A computer-controlled pilot plant has been constructed to study the dynamical behavior and control of the thermal cracking furnace. The governing equations that describe the furnace dynamics are presented, and, based on these equations and a kinetic model, software that simulates the steady-state behavior of the system has been developed. The furnace is divided into eight zones that can be heated independently, and, therefore, any desired temperature profile can be applied. The variables to be measured are the furnace zone temperature, coil outlet temperature (COT), and product yield. Two different control strategies (namely, COT control and furnace wall temperature control) are applied... 

    Comparing the predictive ability of two- and three-parameter cubic equations of state in calculating specific heat capacity, Joule – Thomson coefficient, inversion curve and outlet temperature from Joule – Thomson valve

    , Article Cryogenics ; Volume 116 , 2021 ; 00112275 (ISSN) Nabati Shoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, six cubic equations of state (CEoSs) were used to predict the Joule-Thomson coefficient (JTC), specific heat capacity (SHC), inversion curve (IC) and outlet temperature of the Joule-Thomson (JT) valve parameters. The accuracy of each CEoS was evaluated from the comparison of experimental data with obtained results. Of the six CEoSs, three-paramter CEoSs— Esmaeilzadeh and Roshanfekr (ER), Harmen and Knapp (HK), and Patel and Teja (PT)— were more accurate than two-paramter equations— Nasrifar and Moshfeghian (NM), Peng-Robinson (PR), and Soave-Redlich-Kwong (SRK). Ironically, original SRK showed the optimum accuracy in estimation of JTC. In addition, the Joule-Thomson inversion... 

    Thermal–hydraulic analysis of nanofluids as the coolant in supercritical water reactors

    , Article Journal of Supercritical Fluids ; Volume 128 , 2017 , Pages 47-56 ; 08968446 (ISSN) Rahimi, M. H ; Jahanfarnia, G ; Vosoughi, N ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Supercritical water reactor is one of the generation IV reactors which is basically a creative mixture of conventional PWRs and supercritical pressure steam boilers. Application of nanoparticles provides an effective way of improving heat transfer characteristics of conventional coolants; thus, utilization of a nanofluid coolant in the conceptual design of this reactors is quite reasonable and inevitable. Reactor coolant at supercritical pressure dose not experience any phase change and is heated up to 500 °C in three pass core design. In this paper, thermal–hydraulic analysis of applying a water base Al2O3 nanofluid with different nanoparticle mass fractions were investigated using a porous... 

    Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 NabatiShoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, three equations of state (EOS) in conjunction with computational fluid dynamics (CFD) modeling were used to predict the Joule – Thomson (JT) process behavior for natural gas and various pure gases. The JT effect is encountered in several industrial applications. The experimental determination of the JT coefficient (JTC) is complicated, and there is little gas pressure-volume-temperature (PVT) data available for estimating these JTC. Thus, the development of an efficient model to predict the JT effect in industrial processes is necessary. This study was carried out to attain a clear view of the single phase-flow of hydrocarbons and nitrogen in the JT process with CFD modeling.... 

    Modeling and Control of gas turbine combustor with dynamic and Adaptive Neural networks

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 1 , 2008 , Pages 71-84 ; 1728-144X (ISSN) Mozafari, A. A ; Lahroodi, M ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    This paper presents an Artificial Neural Network (ANN)-based modeling technique for prediction of outlet temperature, pressure and mass flow rate of gas turbine combustor. Results obtained by present modeling were compared with those obtained by experiment. The results showed the effectiveness and capability of the proposed modeling technique with reasonable accuracies of about 95 percent. This paper describes a nonlinear SVFAC (State Vector Feedback Adaptive Control) controller scheme for gas turbine combustor. In order to achieve the satisfied control performance, we have to consider the effect of nonlinear factors contained in controller. The controller is adaptively trained to force the... 

    Experimental investigation on improvement of wet cooling tower efficiency with diverse packing compaction using ann-pso algorithm

    , Article Energies ; Volume 14, Issue 1 , 2021 ; 19961073 (ISSN) Alimoradi, H ; Soltani, M ; Shahali, P ; Moradi Kashkooli, F ; Larizadeh, R ; Raahemifar, K ; Adibi, M ; Ghasemi, B ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate,... 

    Experimental investigation on improvement of wet cooling tower efficiency with diverse packing compaction using ann-pso algorithm

    , Article Energies ; Volume 14, Issue 1 , 2021 ; 19961073 (ISSN) Alimoradi, H ; Soltani, M ; Shahali, P ; Moradi Kashkooli, F ; Larizadeh, R ; Raahemifar, K ; Adibi, M ; Ghasemi, B ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate,... 

    Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm

    , Article Applied Thermal Engineering ; Volume 36, Issue 1 , 2012 , Pages 113-125 ; 13594311 (ISSN) Ghaebi, H ; Saidi, M. H ; Ahmadi, P ; Sharif University of Technology
    2012
    Abstract
    In the present study, exergoeconomic optimization of a trigeneration system for cooling, heating and power purposes has been carried out. The system is made up of air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator and absorption chiller in order to produce cooling, heating and power. The design parameters of this study are selected as: air compressor pressure ratio, gas turbine inlet temperature, pinch point temperatures in dual pressure heat recovery steam generator, pressure of steam that enters the generator of absorption chiller, process steam pressure and evaporator of the absorption chiller chilled water outlet temperature. The economic model... 

    Comparison of performance prediction of solar water heaters between artificial neural networks and conventional correlations

    , Article International Journal of Global Energy Issues ; Volume 31, Issue 2 , 2009 , Pages 122-131 ; 09547118 (ISSN) Razavi, J ; Riazi, M. R ; Raoufi, F ; Sadeghi, A ; Sharif University of Technology
    2009
    Abstract
    The aim of this study was to develop a predictive method for heat transfer coefficients in solar water heaters and their performance evaluation of such heaters with different materials used as heat collectors. Two approaches have been used: conventional method and an Artificial Neural Network (ANN) to predict the performance of solar water heaters and to compare these two approaches. This performance is measured in terms of outlet temperature by using a set of conventional feed forward multi-layer neural networks. The actual experimental data which were used as our network's input gathered from published literature (for polypropylene tubes) and from the experiments carried out recently using...