Search for: oxazepam
0.007 seconds

    Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs

    , Article Analyst ; Volume 132, Issue 7 , 2007 , Pages 672-678 ; 00032654 (ISSN) Es-Haghi, A ; Zhang, X ; Musteata, F. M ; Bagheri, H ; Pawliszyn, J ; Sharif University of Technology
    Royal Society of Chemistry  2007
    Solid-phase microextraction probes based on poly(ethylene glycol)/C18-bonded silica were used for in vivo monitoring of drugs from circulating blood of beagles, over a period of 8 h. After sampling, the extracted drugs were subsequently quantified by liquid chromatography coupled with tandem mass spectrometry. External calibrations in whole blood and phosphate-buffered saline were used to correlate the amount of analytes extracted in regard to the total and free concentrations in blood respectively. The probe provided sufficient sensitivity for the drugs in the blood matrix, while the need for drawing blood was eliminated. The limit of detections of the method from whole blood were 1.7, 1.4... 

    Quantitative Structure - Retention Relationship study of benzodiazepines using adaptive neuro fuzzy inference system as feature selection method

    , Article QSAR and Combinatorial Science ; Volume 27, Issue 4 , 2008 , Pages 407-416 ; 1611020X (ISSN) Jalali Heravi, M ; Kyani, A ; Afsari Mamaghani, S ; Ghadiri Bidhendi, A ; Sharif University of Technology
    A Quantitative Structure-Retention Relationship (QSRR) study of 32 benzodiazepines is performed in this work. Two feature selection methods of Adaptive Neuro Fuzzy Inference System (ANFIS) and a stepwise regression approach adopted for the Multiple Linear Regressions (MLR) were used to predict the Liquid Chromatography-Mass Spectrometry (LC-MS) Retention Time (RT) of these compounds on a Xterra MS C-18 stationary phase. ANFIS and MLR methods were used as variable selection tools and a neural network was employed for predicting the RTs. Tbree descriptors of 3D-MoRSE-signal 06/weighted by atomic polarizabilities (Mor06p), Radial Distribution Function-1.0/weighted by atomic van der Waals... 

    Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system

    , Article Analytical Chemistry ; Volume 79, Issue 12 , 2007 , Pages 4507-4513 ; 00032700 (ISSN) Zhang, X ; Eshaghi, A ; Musteata, F. M ; Ouyang, G ; Pawliszyn, J ; Sharif University of Technology
    An integrated microsampling approach based on solid-phase microextraction (SPME) was developed to provide a complete solution to highly efficient and accurate pharmacokinetic studies. The microsampling system included SPME probes that are made of poly(ethylene glycol) (PEG) and C18-bonded silica, a fast and efficient sampling strategy with accurate kinetic calibration, and a high-throughput desorption device based on a modified 96-well plate. The sampling system greatly improved the quantitative capability of SPME in two ways. First, the use of the C18-bonded silica/PEG fibers minimized the competition effect from analogues of the target analytes in a complicated sample matrix such as blood...