Loading...
Search for: oxidoreductases
0.006 seconds

    The influence of temperature alterations on eccentric contraction-induced isometric force and desmin loss in ratmedial gastrocnemius muscle

    , Article Journal of Medical Sciences ; Volume 8, Issue 2 , 2008 , Pages 162-169 ; 16824474 (ISSN) Vasaghi Gharamaleki, B ; Keshavarz, M ; Gharibzadeh, S ; Sotodeh, M ; Marvi, H ; Mosayebnejad, J ; Ebrahimi Takamjani, I ; Sharif University of Technology
    2008
    Abstract
    In this study isolated perfused rat muscle was used to examine the direct effect of temperature changes on the eccentric contraction-induced force and desmin loss. The left medial gastrocnemius muscle was separated and the entire lower limb was transferred into a prewarmed (35°C) organ bath. Temperature was adjusted to 31 or 39°C before and during eccentric contractions. Maximal isometric force and desmin loss were measured after 15 isometric or eccentric contractions. According to our data, organ bath temperature changes before or during eccentric contractions had no significant effect on force loss. However, a strong correlation between desmin loss and temperature changes before (r = 0.93,... 

    The use of a cis-dioxomolybdenum(VI) dinuclear complex with quadradentate 1,4-benzenediylbis(benzyldithiocarbamate)(2-) as model compound for the active site of oxo transfer molybdoenzymes: Reactivity, kinetics, and catalysis

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 88 , 2012 , Pages 210-215 ; 13861425 (ISSN) Moradi Shoeili, Z ; Boghaei, D. M ; Sharif University of Technology
    2012
    Abstract
    Dinuclear cis-dioxomolybdenum(VI) complex [{MoO 2(Bz 2Benzenediyldtc)} 2] coordinated by a quadradentate dithiocarbamate (Bz 2Benzenediyldtc 2- = 1,4-benzenediylbis(benzyldithiocarbamate)(2-)) has been prepared and characterized by elemental analysis, 13C NMR, IR and UV-vis spectroscopy. The kinetics of the oxygen atom transfer between [{MoO 2(Bz 2Benzenediyldtc)} 2] and PPh 3 was studied spectrophotometrically in CH 2Cl 2 medium at 520 nm and four different temperatures, 288, 293, 298 and 303 K, respectively. The reaction follows second order kinetics with the rate constant k = 0.163(2) M -1 S -1 and its increasingly strong absorption at 520 nm clearly indicate the formation of a μ-oxo... 

    Carbon dioxide: A waste product in the catalytic cycle of α-ketoglutarate dependent halogenases prevents the formation of hydroxylated by-products

    , Article Journal of Physical Chemistry B ; Volume 113, Issue 1 , 2009 , Pages 12-14 ; 15206106 (ISSN) De Visser, S. P ; Latifi, R ; Sharif University of Technology
    American Chemical Society  2009
    Abstract
    We present the first density functional theory study on α-ketoglutarate dependent halogenase and focus on the mechanism starting from the iron(IV)-oxo species. The studies show that the high-valent iron(IV)-oxo species reacts with substrates via an initial and rate determining hydrogen abstraction that is characterized by a large kinetic isotope effect (KIE) of 26.7 leading to a radical intermediate. This KIE value is in good agreement with experimental data. The reaction proceeds via two-state reactivity patterns on competing quintet and septet spin state surfaces with close lying hydrogen abstraction barriers. However the septet spin radical intermediate gives very high barriers for... 

    Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase

    , Article Journal of Hazardous Materials ; Volume 209-210 , 2012 , Pages 199-203 ; 03043894 (ISSN) Forootanfar, H ; Movahednia, M. M ; Yaghmaei, S ; Tabatabaei Sameni, M ; Rastegar, H ; Sadighi, A ; Faramarzi, M. A ; Sharif University of Technology
    2012
    Abstract
    The ability of Paraconiothyrium variabile, a laccase producing ascomycete recently isolated from soil, was studied to eliminate chlorophenol derivatives in submerged culture medium. Among the tested compounds, ρ-chlorophenol (ρ-CP) and pentachlorophenol (PCP) were found to have minimum and maximum toxic effects, respectively, on the growth of the microorganism and at the same time high and low bioelimination percentages. The fungal strain was able to remove 86% of ρ-CP (with initial concentration of 40mgl -1) and 56% of 2,4-dichlorophenol (2,4-DCP; with same concentration as ρ-CP) after 9 days of incubation while no elimination was observed in the presence of 2,4,6-trichlorophenol...