Loading...
Search for: oxygen-reduction-reaction
0.005 seconds

    Experimental Study of Oxygen Reduction Reaction (ORR) on Cu-alloys, Electrocatalysts in Alkaline Solution and Theoretical Investigation of Oxygen Adsorption on Cu-alloys Nano-clusters

    , Ph.D. Dissertation Sharif University of Technology Arab, Ramezan (Author) ; Gobal, Fereydoon (Supervisor)
    Abstract
    In this study, electrochemical oxygen reduction reaction (ORR) was studied on Cu, Pd, Rh, Pd-Cu and Rh-Cu alloys in alkaline solution. Pd-Cu and Rh-Cu alloys were prepared by electrochemical methods. On copper electrode it is found that direct oxygen reduction is accompanied by the electrochemical reductions of copper oxides. Also, mechanism and kinetics of reaction change as the amount of copper oxides increase on the surface. For electrodeposited alloys, it is indicated that the reactivity of Pd-Cu and Rh-Cu alloys toward oxygen reduction is higher than pure Pd and pure Rh. The maximum reactivity among Pd-Cu alloys is related to the sample with 24.5% copper content while the maximum... 

    ZIF-8/PEDOT @ flexible carbon cloth electrode as highly efficient electrocatalyst for oxygen reduction reaction

    , Article International Journal of Hydrogen Energy ; 2019 ; 03603199 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Design and fabrication of highly efficient and low-cost oxygen reduction reaction (ORR) electrocatalysts is of paramount importance for practical applications. Herein, we proposed a cost-effective, metal-free catalyst based on ZIF-8 metal-organic framework nanoparticles/electro-polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film on the surface of flexible carbon cloth (CC) electrode (ZIF-8/PEDOT/CC) via a two-step procedure. For this purpose, worm-like PEDOT nanostructures were deposited on the surface of carbon fibers using a pulse electro-polymerization technique followed by facile growth of ZIF-8 polyhedra nanoparticles via a chemical bath deposition method. The ORR measurements in... 

    ZIF-8/PEDOT @ flexible carbon cloth electrode as highly efficient electrocatalyst for oxygen reduction reaction

    , Article International Journal of Hydrogen Energy ; 2019 ; 03603199 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Design and fabrication of highly efficient and low-cost oxygen reduction reaction (ORR) electrocatalysts is of paramount importance for practical applications. Herein, we proposed a cost-effective, metal-free catalyst based on ZIF-8 metal-organic framework nanoparticles/electro-polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film on the surface of flexible carbon cloth (CC) electrode (ZIF-8/PEDOT/CC) via a two-step procedure. For this purpose, worm-like PEDOT nanostructures were deposited on the surface of carbon fibers using a pulse electro-polymerization technique followed by facile growth of ZIF-8 polyhedra nanoparticles via a chemical bath deposition method. The ORR measurements in... 

    Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs)

    , Article Ceramics International ; Volume 48, Issue 19 , 2022 , Pages 28142-28153 ; 02728842 (ISSN) Yousaf, M ; Akbar, M ; Yousaf Shah, M. A. K ; Noor, A ; Lu, Y ; Akhtar, M. N ; Mushtaq, N ; Hu, E ; Yan, S ; Zhu, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The search for cathode materials with fast oxygen reduction reaction (ORR) catalytic activities and high ionic conductivity is the key obstacle to SOFCs commercialization and its operation at low temperatures. In order to search for a cathode with enhanced catalytic functionality, herein we report a single-phase CoFe2O4 (CFO) and CoGd0.2Fe1.80O4 (CGFO), which can be employed as an active cathode to improve electrocatalytic ORR functionalities at low temperature. It is found that CGFO having enriched oxygen vacancies exhibits the least polarization resistance (RP) of 0.42 Ωcm2 compared to the pure CFO which shows polarization resistance of 0.56 Ω cm2 under H2/air conditions. Furthermore,... 

    Preparation of New Titanium Nitride-Carbon Nanocomposites and Evaluation of their Electrocatalytic Behavior

    , Ph.D. Dissertation Sharif University of Technology Yousefi, Elahe (Author) ; Ghorbani, Mohammad (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Titanium nitride-carbon nanocomposites are synthesized by the reaction of TiCl4 and NaN3 in supercritical benzene medium that also serves as a carbon source. In order to improve the crystallinity of the as-prepared precursor (SI), it is further heat-treated at 1000 ˚C for 3-10 h using anhydrous ammonia and UHP nitrogen atmospheres at 1000 ˚C (SIII-SV). Moreover, to improve electrochemical behavior, the synthesized nanocomposite (SIV) is modified with Pt nanoparticles using a polyol process. For better understanding of synthesized catalyst nature and justifying their variant ORR activity several analyses are done. X-ray diffraction (XRD), Raman spectrum, field emission scanning electron... 

    Synthesis and Characterization of Graphene-based Cathode Performance for Lithium Battery

    , M.Sc. Thesis Sharif University of Technology Ghorbani, Younes (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    The air cathode of li-air batteries plays a pivotal role in the overall performance of Li-air batteries. Graphene-based cathodes have been investigated as cathode catalysts for lithium-air batteries due to their extraordinary potential for accelerating and facilitating oxygen reduction reaction (ORR).In this study graphene oxide have been synthesized via modified Hummers’ method. Consequently, the as obtained graphene oxide have been reduced using chemical, electrochemical, and hydrothermal methods. Results of elechtrochemical evaluations demonstrate that the graphene oxide reduced via hydrothermal method possesses the most positive ORR onset potential (+0.55V vs SHE) among the other samples... 

    Electrochemical Characterization of Qraphene-based Cathode Electrode for Lithium-air Battery

    , M.Sc. Thesis Sharif University of Technology Ahadi, Sina (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    The air cathode of li-air batteries has been identified as a key factor affecting the overall performance of Li-air batteries. Graphene-based cathodes have been investigated as cathode catalysts for lithium-air batteries due to their high activity in accelerating and facilitating oxygen reduction reaction (ORR). In this study at first, graphene oxide was synthesized using Hummers’ method, and then it has been reduced via hydrothermal methode. To increase electrocatalytic properties of the sample Cobalt oxide nanoparticles has been precipitated on reduced graphene oxide, and it has also been doped with Nitrogen. Three samples of reduced graphene aerogel (GA), Nitrogen doped graphene aerogel... 

    Preparation of new titanium nitride-carbon nanocomposites in supercritical benzene and their oxygen reduction activity in alkaline medium

    , Article Electrochimica Acta ; Volume 164 , May , 2015 , Pages 114-124 ; 00134686 (ISSN) Yousefi, E ; Ghorbani, M ; Dolati, A ; Yashiro, H ; Outokesh, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Titanium nitride-carbon nanocomposites are synthesized by the reaction of TiCl4 and NaN3 in supercritical benzene medium that also serves as a carbon source. The as-prepared precursors (SI, SII) are subjected to several heat treatments (SIII-SV). The synthesized nanoparticles are characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The samples are tested as electrocatalyst for oxygen reduction reaction in an alkaline electrolyte. It is shown that the electrocatalytic properties of the synthesized nanoparticles are... 

    Platinum nanoparticles with superacid-doped polyvinylpyrrolidone coated carbon nanotubes: Electrocatalyst for oxygen reduction reaction in high-temperature proton exchange membrane fuel cell

    , Article RSC Advances ; Volume 6, Issue 48 , 2016 , Pages 41937-41946 ; 20462069 (ISSN) Pourjafari Amyab, S ; Saievar Iranizad, E ; Bayat, A ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In order to improve the catalytic activity and durability of proton-exchange-membrane-fuel-cells (PEMFCs), Nafion-free Pt-based catalyst using the superacid-doped polymer coated multiwall carbon nanotubes (MWCNTs) was investigated. The modification and nano polymerization of MWCNTs were developed by polyvinylpyrrolidone (PVP). The following observations were made in the presence of polymer: better dispersion of MWCNTs, higher thermal stability of MWCNT/PVP than that of pristine MWCNT up to 450 °C as tested by thermal gravimetric analysis (TGA), homogeneous distribution of Pt without agglomeration as observed by transmission electron microscope (TEM), and not too much difference in Pt loading... 

    Comprehensive Study of an Ag@Pt Core–shell Nanoparticles Supported on Carbon Structure in a Proton Exchange Membrane Fuel Cell

    , Ph.D. Dissertation Sharif University of Technology Esfandiari, Ali (Author) ; Kazemeini, Mohammad (Supervisor) ; Bastani, Dariush (Supervisor)
    Abstract
    Core-shell structures of Ag@Pt nanoparticles (NPs) dispersed on Carbon Vulcan XC-72, Multiwalled carbon nanotube and reduced graphene oxide (rGO) support containing different Ag:Pt mass ratios and applied to the oxygen reduction reaction (ORR) in a proton exchange membrane fuel cell (PEMFC) were synthesized by the ultrasonic and reduction treatment method. The morphology of as-prepared catalysts characterized by the high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and induced coupled plasma atomic emission spectroscopy (ICP-OES). The ORR activities and stabilities of catalysts were studied through electrochemical measurements utilizing the Cyclic Voltammetry... 

    Synthesis, Characterization and Investigation of Electrocatalytic Activity of Nanoparticle/Cerium Oxide Composites in Oxygen Evolution and Reduction Reactions

    , M.Sc. Thesis Sharif University of Technology Moravvej, Heydar (Author) ; Taherinia, Davood (Supervisor)
    Abstract
    The sluggish kinetics of oxygen evolution and reduction on the surface of electrodes is a major problem for the widespread use of devices that are based on sustainable, renewable and clean technologies, such as fuel cells and metal–air batteries. Therefore, the development of efficient and cost–effective materials for the oxygen evolution (OER: Oxygen Evolution Reaction) and reduction reactions (ORR: Oxygen Reduction Reaction) is highly desirable. In recent years, Metal–organic frameworks (MOFs) and their derivatives, have drawn considerable attention as potential catalysts and electrocatalyst due to their high surface area and porous structure. In this study, cerium (IV) oxide was... 

    Synthesis, Characterization and Investigation of Electrocatalytic Activity of Nanoparticle/Cerium Oxide Composites in Oxygen Evolution and Reduction Reactions

    , M.Sc. Thesis Sharif University of Technology Moravvej, Heydar (Author) ; Taherinia, Davood (Supervisor)
    Abstract
    The sluggish kinetics of oxygen evolution and reduction on the surface of electrodes is a major problem for the widespread use of devices that are based on sustainable, renewable and clean technologies, such as fuel cells and metal–air batteries. Therefore, the development of efficient and cost–effective materials for the oxygen evolution (OER: Oxygen Evolution Reaction) and reduction reactions (ORR: Oxygen Reduction Reaction) is highly desirable. In recent years, Metal–organic frameworks (MOFs) and their derivatives, have drawn considerable attention as potential catalysts and electrocatalyst due to their high surface area and porous structure. In this study, cerium (IV) oxide was... 

    Fabrication of MEA based on sulfonic acid functionalized carbon supported platinum nanoparticles for oxygen reduction reaction in PEMFCs

    , Article RSC Advances ; 2015 , Pages 85775-85784 ; 20462069 (ISSN) Gharibi, H ; Yasi, F ; Kazemeini, M ; Heydari, A ; Golmohammadi, F ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The Nafion ionomer affects the efficiency of the platinum (Pt) catalyst by blocking the active sites thereby restricting the gas permeability of the catalyst layer; but, there is a limitation in the quantity of Nafion ionomer that needs to be added without affecting the cell performance. Sulfonation of carbon-supported catalysts as mixed electronic and protonic conductors has been reported to be an efficient way to increase the triple-phase boundaries. In order to improve the utilization and activity of cathodic catalysts in the oxygen reduction reaction (ORR), Pt nanoparticles were loaded on a mixture of Vulcan XC-72R and MWCNTs, which were functionalized in a mixture of 96% sulfuric acid... 

    A preliminary study of the electro-catalytic reduction of oxygen on Cu-Pd alloys in alkaline solution

    , Article Journal of Electroanalytical Chemistry ; Volume 647, Issue 1 , 2010 , Pages 66-73 ; 15726657 (ISSN) Gobal, F ; Arab, R ; Sharif University of Technology
    2010
    Abstract
    Copper-palladium alloys of different compositions are electrodeposited on nickel from aqueous solutions. These alloys are characterized by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The catalytic activity of these alloys toward oxygen reduction reaction (ORR) in alkaline solution is investigated using rotating disk electrode (RDE). The number of electrons transferred per O2 molecule (n) obtained at different potentials is close to 2 at low overpotential indicating HO2- formation and gradually increases to 4 at higher overpotentials indicating full reduction to OH-. It is shown that Cu-Pd alloys are better electrocatalysts than Pd with Pd-Cu-1 having 24.5%... 

    Nanostructured silver fibers: Facile synthesis based on natural cellulose and application to graphite composite electrode for oxygen reduction

    , Article International Journal of Hydrogen Energy ; Volume 35, Issue 8 , 2010 , Pages 3258-3262 ; 03603199 (ISSN) Sharifi, N ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Abstract
    The development of cheaper electrocatalysts for fuel cells is an important research area. This work proposes a new, simpler and low-cost approach to develop nanostructured silver electrocatalysts by using natural cellulose as a template. Silver was deposited by reduction of Ag complexes on the surface of cellulose fibers, followed by heat removal of the template to create self-standing nanostructured silver fibers (NSSFs). X-Ray diffraction (XRD) showed fcc silver phase and X-Ray photoelectron spectroscopy (XPS) demonstrated that the surface was partially oxidized. The morphology of the fibers consisted of 50 nm nanoparticles as the building blocks, and they possessed a specific surface area... 

    Artificial neural network modeling of Pt/C cathode degradation in pem fuel cells

    , Article Journal of Electronic Materials ; Volume 45, Issue 8 , 2016 , Pages 3822-3834 ; 03615235 (ISSN) Maleki, E ; Maleki, N ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks... 

    Investigating electrochemical behaviors of Ag@Pt core–shell nanoparticles supported upon different carbon materials acting as PEMFC’s cathodes

    , Article Chemical Engineering Transactions ; Volume 70 , 2018 , Pages 2161-2166 ; 22839216 (ISSN) Esfandiari, A ; Kazemeini, M ; Sharif University of Technology
    Italian Association of Chemical Engineering - AIDIC  2018
    Abstract
    Core-Shell structures of Ag@Pt Nanoparticles (NPs) dispersed on different carbon base supports such as Graphene Oxide (GO), Multiwall Carbon Nanotubes (MWCNT) and Carbon black (CB) Vulcan applied to the oxygen reduction reaction (ORR) in a Proton Exchange Membrane Fuel Cell (PEMFC). Electrocatalysts synthesized through the ultrasonic treatment method. The morphology of as prepared materials characterized through the High Resolution Transmission Electron Microscopy (HRTEM) and X-ray diffraction (XRD) analyses. The ORR activities and stabilities of electrocatalysts studied through electrochemical measurements of Cyclic Voltammetry (CV) and single cell tests, respectively. Results revealed all... 

    Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization

    , Article Bioresource Technology ; Volume 102, Issue 12 , June , 2011 , Pages 6761-6765 ; 09608524 (ISSN) Bakhshian, S ; Kariminia, H. R ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Enzymatic decolorization of reactive blue 221 (RB221) using laccase was investigated in a dual-chamber microbial fuel cell (MFC). Suspended laccase was used in the cathode chamber in the absence of any mediators in order to decolorize RB221 and also improve oxygen reduction reaction in the cathode. Molasses was utilized as low cost and high strength energy source in the anode chamber. The capability of MFC for simultaneous molasses and dye removal was investigated. A decolorization efficiency of 87% was achieved in the cathode chamber and 84% COD removal for molasses was observed in the anode chamber. Laccase could catalyze the removal of RB221 and had positive effect on MFC performance as... 

    Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode

    , Article Environmental Science and Technology ; Volume 46, Issue 12 , 2012 , Pages 6584-6593 ; 0013936X (ISSN) Savizi, I. S. P ; Kariminia, H. R ; Bakhshian, S ; Sharif University of Technology
    2012
    Abstract
    Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode...