Loading...
Search for: oxygen-saturation
0.009 seconds

    Efficient implementation of real-time ECG derived respiration system using cubic spline interpolation

    , Article Proceedings - IEEE International Symposium on Circuits and Systems ; 2013 , Pages 1083-1086 ; 02714310 (ISSN) ; 9781467357609 (ISBN) Shayei, A ; Ehsani, S. P ; Shabany, M ; Sharif University of Technology
    2013
    Abstract
    Monitoring the respiratory signal is crucial in many medical applications. Traditional methods for the respiration measurement are normally based on measuring the volume of air inhaled and exhaled by lungs (like spirometer) or oxygen saturation in blood. However, these methods have numerous challenges including their high cost and not being accessible in some cases. In this paper, an algorithm for deriving the respiratory signal from ECG signal is proposed, which is based on other proposed algotithms. This algorithm uses the cubic spline interpolation (CSI) of R-waves in ECG to derive the respiratory signal. The CSI algorithm is made efficient with respect to ECG features in order to reduce... 

    Fluid particle diffusion through high-hematocrit blood flow within a capillary tube

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 170-175 ; 00219290 (ISSN) Saadatmand, M ; Ishikawa, T ; Matsuki, N ; Jafar Abdekhodaie, M ; Imai, Y ; Ueno, H ; Yamaguchi, T ; Sharif University of Technology
    2011
    Abstract
    Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the...