Loading...
Search for: parallel-plate-waveguide
0.011 seconds

    THz plasmonic devices based on an array of metallic posts in a parallel-plate waveguide

    , Article International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Mainz ; 2013 ; 21622027 (ISSN) ; 9781467347174 (ISBN) Ahmadi Boroujeni, M ; Shahabadi, M ; Altmann, K ; Sharif University of Technology
    2013
    Abstract
    An array of metallic posts sandwiched between two parallel metal plates supports highly-confined surface waves that can be regarded as spoof surface plasmons. This structure which is called the parallel-plate ladder waveguide (PPLWG) can be used for implementing THz guided-wave devices. In this paper, the effect of post shapes on waveguiding characteristics of PPLWG is analyzed and realization of certain devices such as couplers using the proposed structure is investigated  

    Analysis of Inhomogeneous Parallel-Plate Ladder Waveguide for Terahertz Applications

    , M.Sc. Thesis Sharif University of Technology Mohseny Tonekabony, Navid (Author) ; Ahmadi Boroujeni, Mahdi (Supervisor)
    Abstract
    In this thesis a waveguiding structure is introduced and analyzed for terahertz applications. The proposed structure is called Inhomogeneous Parallel-Plate Ladder Waveguide (IPPLWG). This waveguide is formed by locating a periodic structure inside parallel-plate waveguide.This periodic structure itself consists of a array of metallic posts surrounded by silicon. The combination of metallic posts and silicon have the capability of guiding and confining of EM waves in terahertz band. IPPLWG can be used in implementing the passive terahertz devices such as filters and couplers. The main objective in this thesis is to characterize the IPPLWG for potential applications. Because IPPLWG has open... 

    Transmission line model for one-dimensional metallic grating in TE polarization

    , Article 2010 International Conference on Photonics, ICP2010, 5 July 2010 through 7 July 2010 ; July , 2010 ; 9781424471874 (ISBN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2010
    Abstract
    A simple transmission line model is presented to emulate field behavior in a one dimensional metallic grating in TE polarization. The proposed model is based on the fact that pairs of adjacent metallic strips in the structure act as a parallel plate waveguide supporting TE guided modes for low enough frequencies. The effect of fringing fields is also included and a very good approximate model is obtained to simulate metallic gratings in TE polarization  

    Parallel-plate waveguide integrated filters and lenses realized by metallic posts for terahertz applications

    , Article International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 25 September 2016 through 30 September 2016 ; Volume 2016-November , 2016 ; 21622027 (ISSN) ; 9781467384858 (ISBN) Ahmadi Boroujeni, M ; Sharif University of Technology
    IEEE Computer Society  2016
    Abstract
    In this paper, we report on the design and analysis of filters and lenses realized by an array of metallic posts integrated in a parallel-plate waveguide (PPWG). The design methodology of these components is inferred from the modal analysis of a spoof surface plasmonic waveguide composed of metallic posts arranged in a 1D periodic structure inside PPWG. Samples of the proposed devices are analyzed using a full-wave analysis method and their performance is assessed. We show that the mentioned structure can be used to realize all-metallic band-pass filters and lenses for mm-wave and terahertz applications  

    The Gaussian expansion of the Green's function of an electric current in a parallel-plate waveguide

    , Article 2008 IEEE International RF and Microwave Conference, RFM 2008, Kuala Lumpur, 2 December 2008 through 4 December 2008 ; April , 2008 , Pages 46-48 ; 9781424428663 (ISBN) Tajdini, M. M ; Shishegar, A. A ; Sharif University of Technology
    2008
    Abstract
    In this paper, a novel closed form expression is derived to find the Green's function of a horizontal electric current in a parallel-plate waveguide. It is achieved by expanding the Green's function into a series of Gaussian functions. This new method is called the Gaussian Green's function (GGF) method. The main advantage of the GGF method lies in its precision as well as rapid convergence. Numerical results confirm that the closed form expression yields less than 0.2% error compared to the numerical integration of the spectral integral. Furthermore, it is verified that this method can be in excellent agreement with the complex images (CI) method. © 2008 IEEE  

    Parallel-plates-based dirac leaky wave antennas

    , Article IET Microwaves, Antennas and Propagation ; Volume 15, Issue 15 , 2021 , Pages 1877-1890 ; 17518725 (ISSN) Rezaee, S ; Memarian, M ; Ahmadian, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In this work, the authors experimentally show Dirac Leaky Wave Antennas (DLWAs) at upper microwave frequencies. For the first time, DLWAs are implemented using simple Parallel plate waveguide (PPW) technology, while yielding desirable radiation features and continuous beam scanning through broadside, as well as extremely low profile, with significant ease of fabrication, making them well suited for Ku band applications such as satellite communication, radar and emerging fifth-generation (5G). A planar Dirac photonic crystal in PPW is shown with a closed bandgap and linear dispersion around broadside. In this work, 1D and 2D PPDLWAs are designed that provide scannable fan and pencil beams,... 

    A distributed circuit model for side-coupled nanoplasmonic structures with metal-insulator-metal arrangement

    , Article IEEE Journal on Selected Topics in Quantum Electronics ; Volume 18, Issue 6 , March , 2012 , Pages 1692-1699 ; 1077260X (ISSN) Rezaei, M ; Jalaly, S ; Miri, M ; Khavasi, A ; Fard, A. P ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    IEEE  2012
    Abstract
    A transmission line model is developed for coupled plasmonic metal-insulator-metal (MIM) waveguides. In the proposed model coupling between electric fields of two plasmonic waveguides is modeled by distributed mutual capacitor while distributed mutual inductor accounts for magnetic field coupling. These mutual elements are determined using propagation constants of supermodes of coupled waveguides. The model is applied to analyze coupled line directional coupler and side-coupled rectangular resonators. The effectiveness of the model is assessed using fully numerical finite-difference time-domain (FDTD) technique. The results have excellent agreement with the numerical methods