Loading...
Search for: paramecium
0.008 seconds

    Numerical analysis of ciliary beat in Paramecium: Increasing ciliary spacing as a low energy cost method for maneuvering

    , Article Recent Patents on Mechanical Engineering ; Volume 6, Issue 3 , September , 2013 , Pages 227-237 ; 1874477X (ISSN) Nematollahi, A ; Zand, M. M ; Sharif University of Technology
    2013
    Abstract
    In recent years, a number of patents have been devoted to designing micro robots for minimally invasive therapies inspired by Paramecium. Paramecium changes its swimming direction due to application of an external magnetic or electric field. Changing ciliary beat direction and frequency have been identified as possible methods for maneuvering through water; however, effects of variations in ciliary spacing on swimming trajectory have been poorly studied. In this work, it is aimed to analyze the effects of adjusting the ciliary spacing on swimming trajectory. For determining the swimming trajectory, Paramecium membrane is discretized to boundary elements with length of 15μm on which there are... 

    Modeling Paramecium swimming in a capillary tube

    , Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 658-667 ; 10263098 (ISSN) Sarvestani, A. N ; Shamloo, A ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    In certain types of biomimetic surgery systems, micro robots inspired by Paramecium are designed to swim in a capillary tube for gaining access to internal organs with minimal invasion. Gaining insight into the mechanics of Paramecium swimming in a capillary tube is vital for optimizing the design of such systems. There are two approaches to modeling the physics of micro swimming. In the envelope approach, which is widely accepted by researchers, Paramecium is approximated as a sphere, self-propelled by tangential and normal surface distortions. However, not only is this approach incapable of considering the specific geometry of Paramecium, but it also neglects short range hydrodynamic...