Loading...
Search for: partial-oxidation-of-methane
0.006 seconds

    Comparison and reduction of the chemical kinetic mechanisms proposed for thermal partial oxidation of methane (TPOX) in porous media

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 37 , 2021 , Pages 19312-19322 ; 03603199 (ISSN) Fotovat, F ; Rahimpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The effectiveness and reducibility of the methane combustion kinetic mechanisms were examined for the TPOX process in a porous medium. To this end, TPOX was successfully simulated using ANSYS CHEMKIN-Pro through a reactor network model composed of perfectly stirred and honeycomb-monolith reactors. The efficacy of six chemical kinetic mechanisms was compared for the equivalence ratios (ERs) ranging from 2.4 to 2.6 with a constant thermal load of 1540 kW/m2. This comparison revealed that Konnov was the most successful mechanism in the prediction of the H2 and CO mole fractions. This mechanism along with the GRI-3.0 and USC-Mech 2.0 mechanisms were then reduced by the direct relation graph with... 

    Mesoporous nanostructured Ni/MgAl2O4 catalysts: Highly active and stable catalysts for syngas production in combined dry reforming and partial oxidation

    , Article International Journal of Hydrogen Energy ; Volume 44, Issue 21 , 2019 , Pages 10427-10442 ; 03603199 (ISSN) Jalali, R ; Nematollahi, B ; Rezaei, M ; Baghalha, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, the combination of dry reforming and partial oxidation of methane on nickel catalysts supported on mesoporous MgAl2O4 was investigated. The support was prepared by a facile sol-gel route using propylene oxide as a gelation agent. The characterizations of the catalysts were performed by BET, XRD, TPR, TPO, TPH, UV–vis, CO-dispersion, SEM and TEM techniques. In addition, the effects of nickel content, reaction and reduction temperatures, feed ratio and the GHSV value on the physicochemical and catalytic properties were studied. The results revealed that the nickel content had an optimum value of 7.5 wt% and the catalyst with this content of nickel exhibited the highest activity.... 

    Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane

    , Article Renewable Energy ; Volume 149 , April , 2020 , Pages 1053-1067 Jalali, R ; Rezaei, M ; Nematollahi, B ; Baghalha, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a comprehensive study was conducted on the application of various MeAl2O4 spinels (Me = Fe, Co, Ni, Cu, Zn, Mg) as the catalyst support for the preparation of nickel-based catalysts in the combined dry reforming and partial oxidation. These supports were synthesized by a novel facile sol-gel method using propylene oxide as the gelation agent and nickel was deposited on these supports by the deposition-precipitation method. The prepared samples were characterized by N2 adsorption/desorption, XRD, TPR, TPO, CO2-TPD, SEM, and TEM techniques. In addition, the temperature-programmed methane dissociation (TPMD) was performed to evaluate the effect of nickel-support interaction on... 

    Comparison and validation of plug and boundary layer flow models of monolithic reactors: Catalytic partial oxidation of methane on Rh coated monoliths

    , Article International Journal of Chemical Reactor Engineering ; Volume 6 , 2008 ; 15426580 (ISSN) Sari, A ; Safekordi, A ; Farhadpour, F. A ; Sharif University of Technology
    Walter de Gruyter GmbH  2008
    Abstract
    Catalytic partial oxidation of methane in short residence time rhodium coated monolithic reactors offers an attractive route for syngas production. The plug flow and boundary layer flow approximations are considered as computationally efficient substitutes for the full Navier-Stokes model of the reactor while including detailed heterogeneous and homogeneous chemistry. The one dimensional plug flow model has trivial computational demands but only a limited range of application. The boundary layer model provides an excellent, computationally manageable substitute for the full Navier-Stokes model over a wide range of operating conditions. Using the 38-step elementary surface reaction mechanism...