Loading...
Search for: particle-volume-fractions
0.012 seconds

    Comparison of experimental and analytical fracture toughness values of SiCP/QE22 Mg-alloy composites

    , Article Materials and Design ; Volume 27, Issue 6 , 2006 , Pages 520-525 ; 02641275 (ISSN) Abachi, P ; Purazrang, K ; Sharif University of Technology
    2006
    Abstract
    In the present work, the fracture toughness data generated on the QE22 magnesium alloy as the matrix alloy and SiC particles reinforced composites using the short rod standard specimens. The short rod specimens of 18 mm diameter were prepared from the extruded rods in the extrusion direction. The fracture toughness values are primarily evaluated experimentally and then analytically by using mathematical methods. The suitability of these methods to predict this property was also discussed. Results showed that the incorporation of the SiC particles with three different shapes (i.e. sharp, blocky and round) decreases in general the fracture toughness of the QE22 Mg-alloy. This effect is... 

    Interfacial instabilities in sediment suspension flows

    , Article Journal of Fluid Mechanics ; Vol. 758, issue , November , 2014 , p. 312-326 Abedi, M ; Jalali, M. A ; Maleki, M ; Sharif University of Technology
    Abstract
    We report the existence of interfacial instability in the two-dimensional channel flow of a sediment suspension whose particles diffuse in the carrier fluid due to shear-induced collisions. We derive partial differential equations that govern the deformations of the interface between the sediment suspension and the clear fluid, and devise a perturbation method that preserves the positivity of the particle volume fraction. We solve perturbed momentum, particle transport and deforming interface equations to show that a Kelvin-Helmholtz-type unstable wave develops at the interface for wavelengths longer than a critical value. Short-wavelength oscillations of the interface are damped due to... 

    Thermal Conductivity of Fe2O3 and Fe3O4 Magnetic Nanofluids Under the Influence of Magnetic Field

    , Article International Journal of Thermophysics ; Volume 36, Issue 10-11 , September , 2015 , Pages 2720-2739 ; 0195928X (ISSN) Karimi, A ; Goharkhah, M ; Ashjaee, M ; Shafii, M. B ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    In this paper, the thermal conductivity of water-based hematite Fe2O3 and magnetite Fe3O4 nanofluids have been investigated in the absence and presence of a uniform magnetic field. The experiments have been performed in the volume concentration range of 0 % to 4.8 % and the temperature range of 20∘C to 60∘C. The effects of the particle volume fraction, temperature, and magnetic field strength on the thermal conductivity have been analyzed. Results show that the thermal conductivity of iron oxide nanofluids has a direct relation with the particle volume fraction and temperature, without the presence of a magnetic field. But surprisingly, when the magnetic field is applied, it is observed that... 

    CFD modeling of natural convection heat transfer of TIO2-water nanofluid in a cylindrical container

    , Article Frontiers in Heat and Mass Transfer ; Volume 7, Issue 1 , 2016 ; 21518629 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Global Digital Central 
    Abstract
    This work focuses on numerical validation of natural convection heat transfer of TiO2-water nanofluids in a cylindrical container using COMSOL. The main aim of this study is to examine different available approaches to calculate effective thermal conductivity and compare them with experimental data available in the literature. Simulation results show that for considered mixture, average Nusselt number decreases by increasing Rayleigh number and particle volume fraction. It has been found that only one model was able to represent similar trends for given particle volume fractions, compared to experimental results  

    Numerical investigation of effects of uniform magnetic field on heat transfer around a sphere

    , Article International Journal of Heat and Mass Transfer ; Volume 114 , 2017 , Pages 703-714 ; 00179310 (ISSN) Abbasi, Z ; Molaei Dehkordi, A ; Abbasi, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this article, ferrohydrodynamic forced-convection heat transfer from a heated sphere embedded in a ferrofluid in the presence of the uniform external magnetic field has been studied numerically for the first time over a wide range of Reynolds number value, nanoparticle diameter, particle volume fraction, and magnetic field intensity. Despite the uniform external magnetic field applied, the internal magnetic field near the sphere could be nonuniform due to the considerable difference between the relative magnetic permeability of the sphere and the surrounding medium. Kelvin body force arises from this nonuniformity and induces vortexes near the sphere. These vortexes disturb the boundary... 

    On the sensitivity of the nanostructural parameters on youngg"s modulus of PLSNs in fully intercalated structures

    , Article Journal of Composite Materials ; Volume 43, Issue 24 , 2009 , Pages 2921-2941 ; 00219983 (ISSN) Zehtab Yazdi, A ; Bagheri, R ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Polymer-layered silicate nanocomposites have been observed to demonstrate enhanced mechanical properties particularly at low weight fractions of silicate. Experimental and theoretical investigations reveal that numerous structural parameters strongly influence the modulus of such nanocomposites. A multiscale micromechanical model is developed which considers a wide range of different affecting parameters including the particle aspect ratio, the number of silicate layers per stack, the d-spacing ratio between the layers, the penetration of polymer chains along silicate sheets, the intercalation feature, and the particle volume fraction. The developed model illustrates the accuracy and... 

    Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks

    , Article International Journal of Thermal Sciences ; Volume 58 , 2012 , Pages 168-179 ; 12900729 (ISSN) Seyf, H. R ; Feizbakhshi, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Numerical investigation on the application of nanofluids in Micro-Pin-Fin Heat Sinks (MPFHSs) has been presented in this paper. To investigate flow and heat transfer behavior in MPFHS the three-dimensional steady Navier-Stokes and energy equations were discretized using a finite volume approach and have been solved iteratively, using the SIMPLE algorithm. DI-water is used as a base coolant fluid while the nanoparticles used in the present study are CuO nanoparticles with mean diameters of 28.6 and 29 nm and Al 2O 3 nanoparticles with mean diameters of 38.4 and 47 nm. The results show that (i) a significant enhancement of heat transfer in the MPFHS due to suspension of CuO orAl 2O 3...