Loading...
Search for: particles-deposition
0.006 seconds

    Submicron particle deposition in pulmonary alveoli during cyclic breathing

    , Article Scientia Iranica ; Volume 24, Issue 4 , 2017 , Pages 1975-1984 ; 10263098 (ISSN) Monjezi, M ; Saidi, M. S ; Ahmadi, G ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    The prediction of deposition efficiency of submicron particles in the pulmonary alveoli has received special attention due to its importance for drug delivery systems and for assessing air pollutants health risks. In this work, the pulmonary alveoli of a healthy human are idealized by a three-dimensional honeycomb-like configuration and a fluid-structure interaction analysis is performed. In contrast to previous works in which the inlet flow rate is predefined, in this model, a negative pressure is imposed on the outside surface of the flalveolus which causes air to flow in and out of the alveolus. The resulting flow patterns confirmed that there was no circulation in the terminal alveolus.... 

    Modeling particle deposition in the respiratory system during successive respiratory cycles

    , Article Scientia Iranica ; Volume 27, Issue 1 B , February , 2020 , Pages 215-228 Nemati, H ; Saidi, M. S ; Hosseini, V ; Sharif University of Technology
    Sharif University of Technology  2020
    Abstract
    This study uses a 5-lobe symmetric model to investigate total, lobar and generational particle deposition fractions in the lungs during successive cycles. It was found that for the particle size between 0.05 and 2 μm and the tidal volumes greater than 1000 ml, the effect of successive cycles helped predict more deposition fraction per cycle up to about 16% than that of a single cycle. The mentioned range of tidal volumes corresponds to light or heavy physical activities. Therefore, it can be understood that people, when physically active, exposed to particulate matter within the mentioned size range are at higher health risk as compared to both the resting state and the same state... 

    Optimization of Deposition of Micro- and Nano Particles in Filters and Porous Media

    , M.Sc. Thesis Sharif University of Technology Banihashemi Tehrani, Mostafa (Author) ; Moosavi, Ali (Supervisor) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    This study is aimed at simulation of the flow of air and aerosol particles through a single square fibrous filter media made up of micro fiber as well as the importance and effect of different fiber’s cross-sectional shapes and arrangements on particle deposition and filtration efficiency. An understanding of the role of changing the laminar flow regime from laminar vortex shedding "(Re"=100" and Re"=200")" to subcritical flow "(Re"=1000")" developed for the first case. The study deals with parallel and staggered multi-fibrous filter media with circular, elliptical, and equilateral triangular micro fiber’s cross-sectional shape of the transient laminar vortex shedding flow "(Re"=200")" .... 

    Computational Simulation of the Effect of Breathing Particle Mass and Breathing Frequency on a Human Respiratory System

    , M.Sc. Thesis Sharif University of Technology Goodarzi Ardakani, Vahid (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Our surrounding environment is full of particles with different sizes. These suspended particles enter our body through respiration process, which of course has some negative effects. Therefore, it is very important to comprehend the mechanisms and the effective parameters on these particles motion and their deposition inside the human airway. This work numerically investigates the effects of particles mass and breathing frequency on the deposition of particles in human respiratory system. To this end, a realistic 3-D model of human respiratory system geometry, including nostrils, vestibule, nasal cavity, human sinuses, nasopharynx, oropharynx, larynx, trachea, and main bronchus has been... 

    Modeling of Nano-Aerosol Deposition in Human Lung in Successive Respiratory Cycles

    , M.Sc. Thesis Sharif University of Technology Nemati, Hossein (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Hosseini, Vahid (Co-Advisor)
    Abstract
    Particulates are a group of air pollutants. They can enter the respiratory system by breathing and cause adverse effects on its performance. Also, inhaled drugs, recently have found many applications in the field of drug delivery. Prediction of particle deposition in the lungs during breathing, can provide useful information on the effects of deposited particles on the respiratory system. When a person is exposed to breathable particulates, after a while with completion of a few respiratory cycles, particle deposition rate, reaches a certain amount at the quasi-steady state. A lot of researchers have investigated particle deposition in the lung, but all of them have studied a single... 

    Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows

    , Article Atmospheric Environment ; Vol. 89, issue , 2014 , Pages 199-206 ; ISSN: 13522310 Saidi, M. S ; Rismanian, M ; Monjezi, M ; Zendehbad, M ; Fatehiboroujeni, S ; Sharif University of Technology
    Abstract
    Modeling the behavior of suspended particles in gaseous phase is important for diverse reasons; e.g. aerosol is usually the main subject of CFD simulations in clean rooms. Additionally, to determine the rate and sites of deposition of particles suspended in inhaled air, the motion of the particles should be predicted in lung airways. Meanwhile there are two basically different approaches to simulate the behavior of particles suspension, Lagrangian and Eulerian approaches. This study compares the results of these two approaches on simulating the same problem. An in-house particle tracking code was developed to simulate the motion of particles with Lagrangian approach. In order to simulate the... 

    Applying a realistic novel ventilation model based on spatial expansion of acini in a stochastic lung

    , Article Scientia Iranica ; Vol. 21, issue. 2 , 2014 , pp. 358-369 ; ISSN :10263098 Dastanpour, R ; Monjezi, M ; Saidi, M. S ; Pishevar, A ; Sharif University of Technology
    Abstract
    In this paper, particle deposition in the upper airways and five lobes of a human lung is simulated. The simulation is based on a stochastic lung model, derived from detailed morphometric measurements. Pathways are simulated using Monte Carlo methods consequently the whole structure changes both stochastically and statistically in each simulation. In this investigation the termination phenomena is a function of each daughter's diameter which best satisfies the lung's morphometry. Complementary to the previous available assumptions, i.e. flow divisions according to the ratio of daughter's cross sections or distal volumes, in this investigation flow rates are computed in an upward manner... 

    On the induced airflow and particle resuspension due to a falling disk

    , Article Particulate Science and Technology ; Volume 31, Issue 2 , Jun , 2013 , Pages 190-198 ; 02726351 (ISSN) Sajadi, B ; Saidi, M. H ; Ahmadi, G ; Kenney, S. M ; Taylor, J ; Sharif University of Technology
    2013
    Abstract
    In this article, the induced airflow and the resultant particles resuspension due to a disk falling freely under the effect of gravity is studied using numerical and experimental approaches. The results showed that an axisymmetric vortex is generated on the disk tip as the disk falls and sheds after impacting the floor. While the effect of this ring vortex on the particles detachment from the floor is small, it has considerable influence on the dispersion of resuspended particles. The simulation results indicated that particles are mainly resuspended from an annular area beneath the disk tip where the generated wall shear is sufficiently high. As particles detachment is mainly controlled by... 

    Modeling of transient permeate flux decline during crossflow microfiltration of non-alcoholic beer with consideration of particle size distribution

    , Article Journal of Membrane Science ; Volume 411-412 , September , 2012 , Pages 13-21 ; 03767388 (ISSN) Kazemi, M. A ; Soltanieh, M ; Yazdanshenas, M ; Sharif University of Technology
    2012
    Abstract
    Crossflow microfiltration of non-alcoholic beer is investigated numerically and it has been verified by experimental data. Due to the presence of particles with different sizes in feed suspension, a modified combination of three mechanisms of particle back-diffusion is developed to predict particle deposition and cake layer buildup during the process. The simulation results show that smaller particles (about 1μm) are the main contributor to the cake layer due to a minimum in back transport and are the main reason of the flux decline. On the other hand, larger particles (a p>20μm) are swept away along the membrane during the filtration process and move toward the membrane exit due to the... 

    Carbon nanoparticles in high-performance perovskite solar cells

    , Article Advanced Energy Materials ; Volume 8, Issue 12 , 2018 ; 16146832 (ISSN) Yavari, M ; Mazloum Ardakani, M ; Gholipour, S ; Marinova, N ; Delgado, J. L ; Turren Cruz, S. H ; Domanski, K ; Taghavinia, N ; Saliba, M ; Gratzel, M ; Hagfeldt, A ; Tress, W ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    In the past few years, organic–inorganic metal halide ABX3 perovskites (A = Rb, Cs, methylammonium, formamidinium (FA); B = Pb, Sn; X = Cl, Br, I) have rapidly emerged as promising materials for photovoltaic applications. Tuning the film morphology by various deposition techniques and additives is crucial to achieve solar cells with high performance and long-term stability. In this work, carbon nanoparticles (CNPs) containing functional groups are added to the perovskite precursor solution for fabrication of fluorine-doped tin oxide/TiO2/perovskite/spiro-OMeTAD/gold devices. With the addition of CNPs, the perovskite films are thermally more stable, contain larger grains, and become more... 

    Challenge in particle delivery to cells in a microfluidic device

    , Article Drug Delivery and Translational Research ; Volume 8, Issue 3 , 2018 , Pages 830-842 ; 2190393X (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Micro and nanotechnology can potentially revolutionize drug delivery systems. Novel microfluidic systems have been employed for the cell culture applications and drug delivery by micro and nanocarriers. Cells in the microchannels are under static and dynamic flow perfusion of culture media that provides nutrition and removes waste from the cells. This exerts hydrostatic and hydrodynamic forces on the cells. These forces can considerably affect the functions of the living cells. In this paper, we simulated the flow of air, culture medium, and the particle transport and deposition in the microchannels under different angles of connection inlet. It was found that the shear stress induced by the... 

    Prediction of particle deposition in the respiratory track using 3D-1D modeling

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1479-1486 ; 10263098 (ISSN) Monjezi, M ; Dastanpour, R ; Saidi, M. S ; Pishevar, A. R ; Sharif University of Technology
    2012
    Abstract
    Airflow simulation of the whole respiratory system is still unfeasible due to the geometrical complexity of the lung airways and the diversity of the length scales involved in the problem. Even the new CT imaging system is not capable of providing accurate 3D geometries for smaller tubes, and a complete 3D simulation is impeded by the limited computational resources available. The aim of this study is to develop a fully coupled 3D-1D model to make accurate prediction of airflow and particle deposition in the whole respiratory track, with reasonable computational cost and efficiency. In the new proposed method, the respiratory tree is divided into three parts to be dealt with using different...