Loading...
Search for: pec
0.008 seconds

    Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning

    , Article Polymers for Advanced Technologies ; Volume 27, Issue 3 , 2016 , Pages 358-365 ; 10427147 (ISSN) Saveh Shemshaki, N ; Latifi, M ; Bagherzadeh, R ; Malekshahi Byranvand, M ; Naseri, N ; Dabirian, A ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Iron(III) oxide (hematite, Fe2O3) nanofibers, as visible light-induced photoanode for water oxidation reaction of a water splitting process, were fabricated through electrospinning method followed by calcination treatment. The prepared samples were characterized with scanning electron microscopy, and three-electrode galvanostat/potentiostat for evaluating their photoelectrochemical (PEC) properties. The diameter of the as-spun fibers is about 300nm, and calcinated fibers have diameter less than 110nm with mesoporous structure. Optimized multilayered electrospun α-Fe2O3 nanostructure mats showed photocurrent density of 0.53mA/cm2 under dark and visible illumination conditions at voltage 1.23V... 

    Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions

    , Article Journal of Materials Chemistry A ; Volume 5, Issue 45 , 2017 , Pages 23406-23433 ; 20507488 (ISSN) Naseri, A ; Samadi, M ; Pourjavadi, A ; Moshfegh, A. Z ; Ramakrishna, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Graphitic carbon nitride (g-C3N4) is a metal-free conjugated polymer constructed from two-dimensional sheets with a bandgap energy of 2.7 eV, which makes it an applicable and efficient visible-active photocatalyst for H2 production. In the present study, the basic concepts and principles of photocatalytic water splitting have been discussed, and a guide for the selection of appropriate photocatalysts, focusing on the g-C3N4 nanomaterials, has been proposed. Our approach is mainly concentrated on evaluating two factors, namely the solar-to-hydrogen (STH) conversion and apparent quantum yield (AQY) for different photocatalysts, to provide an in-depth analysis and a framework for solar H2... 

    Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance

    , Article Applied Catalysis B: Environmental ; Volume 269 , 2020 Zhou, T ; Chen, S ; Li, L ; Wang, J ; Zhang, Y ; Li, J ; Bai, J ; Xia, L ; Xu, Q ; Rahim, M ; Zhou, B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    TiO2 is a promising photoanode material for photoelectrochemical (PEC) water splitting, but its severe bulk recombination of photogenerated carriers, sluggish oxygen evolution reaction (OER) kinetics and poor visible light response are the main bottleneck problems. Here, the carbon quantum dots (CQDs) modified anatase/rutile TiO2 photoanode (CQDs/A/R-TiO2) was designed by growth of anatase TiO2 nanothorns on rutile TiO2 nanorods and further surface modification of CQDs. The results revealed that the A/R-TiO2 heterojunction significantly suppressed the bulk recombination of photogenerated carriers. With further incorporation of CQDs into A/R-TiO2, dramatical improvement of OER kinetics and...