Loading...
Search for: permanent-magnet-motor
0.006 seconds

    Experimental investigation on the fault diagnosis of permanent magnet DC electromotors

    , Article Insight: Non-Destructive Testing and Condition Monitoring ; Volume 55, Issue 8 , August , 2013 , Pages 422-427 ; ISSN: 13542575 Behzad, M ; Ebrahimi, A ; Heydari, M ; Asadi, M ; Alasti, A ; Sharif University of Technology
    Abstract
    In this paper, an algorithm for fault diagnosis of permanent magnet DC electromotors.has been investigated, based on vibration and electrical current monitoring. Several permanent magnet DC electromotors.with previously determined faults have been prepared and the vibration, current and speed data have been measured. The relationship between certain related measured data and faults has been determined. A fault diagnosis algorithm has been developed in this research based on these relationships. This algorithm can be used in mass production lines for quality control  

    Simulation and experimental study of real-time robust control of hybrid stepper motor with QFT method in micro-step operation

    , Article Proceedings of the IEEE International Conference on Mechatronics 2004, ICM'04, Istanbul, 3 June 2004 through 5 June 2004 ; 2004 , Pages 364-368 ; 0780385993 (ISBN) Ghafari, A. S ; Vossoughi, G. R ; Sharif University of Technology
    2004
    Abstract
    Real-time linear robust control of a two phase hybrid stepper motor with Quantitative Feedback Theory method in micro-stepping operation is considered in this paper. Utilizing the phase currents as inputs, linear robust controller is derived for a Hybrid Stepper Motor that achieves robustness to parametric and dynamic uncertainties such as viscous friction, load torque, flux linkage and other uncertainties. Simulation and experimental studies are presented to show the efficiency of the control design approach  

    Electromagnetic design optimization of a modular linear flux-reversal motor

    , Article Electric Power Components and Systems ; Volume 44, Issue 18 , 2016 , Pages 2112-2120 ; 15325008 (ISSN) Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Although modular linear flux-reversal permanent magnet motors are widely attractive for high reliability urban rail transit because of their advantages such as high power density, high reliability, low permanent magnet flux leakage problem, and improved fault-tolerant capability, they suffer from high thrust ripples. In this article the authors use a layer model for defining different optimization problems to improve thrust density, efficiency, and thrust ripples, independently and simultaneously. Design variables are chosen based on the sensitivity analysis of different objective functions relative to motor different geometrical parameters and some constraints are taken into account to... 

    Cogging force mitigation techniques in a modular linear permanent magnet motor

    , Article IET Electric Power Applications ; Volume 10, Issue 7 , 2016 , Pages 667-674 ; 17518660 (ISSN) Tootoonchian, F ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Modular linear doubly salient permanent magnet motors are well adapted to linear propulsion systems because of their distinct characteristics, such as high efficiency and power density, reduced maintenance and initial cost, low noise and permanent magnet (PM) leakage flux, and fault tolerance capability. However, such motors suffer from high cogging thrust. In this study, various techniques based on previously proposed methods for PM machines are applied on the studied motor and evaluated by using non-linear three-dimensional time-stepping finite element analysis; three novel, optimised techniques are then presented. The techniques presented are based on the minimisation of the variation in... 

    Sensorless control of non-salient PMSM using asymmetric alternating carrier injection

    , Article 2011 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2011, 25 September 2011 through 28 September 2011 ; September , 2011 , Pages 7-12 ; 9781457714184 (ISBN) Ghazimoghadam, M. A ; Tahami, F ; Sharif University of Technology
    Abstract
    Sensorless control of permanent magnet synchronous motors allows reducing cost and complexity, and increasing mechanical robustness and noise immunity. Sensorless methods based on high frequency carrier injection have attracted considerable attention in recent years as they can estimate rotor position in a wide speed range. These methods employ anisotropic properties of rotor to estimate rotor position in ac machines. With internal permanent magnet motors, the high frequency signal injection method can deliver precise sensorless control, however in surface-mounted permanent magnet machines, where a small saliency arises from main flux saturation, the estimation of rotor magnet position is...