Loading...
Search for:
pharmaceutical-applications
0.009 seconds
Highly sensitive 3D gold nanotube ensembles: Application to electrochemical determination of metronidazole
, Article Electrochimica Acta ; Volume 106 , 2013 , Pages 288-292 ; 00134686 (ISSN) ; Ghorbani, M ; Ghalkhani, M ; Vossoughi, M ; Dolati, A ; Sharif University of Technology
2013
Abstract
Three-dimensional gold nanoelectrode ensembles (3D GNE) have proven to be promising nanoelectrodes by representing much higher sensitivity compared to both their 2D nanostructures and bulk counterparts. The sensitivity of 3D gold nanotubes (GNTs) fabricated through electrodeposition inside the pores of polycarbonate templates, was examined toward metronidazole (MTZ) as one of their pharmaceutical applications. The electrochemical behavior of MTZ at the 3D GNT-modified electrode was discussed in detail through cyclic voltammetry (CV) which suggested an irreversible reduction of nitro group to the corresponding hydroxylamine and a subsequently reversible redox peak for the corresponding...
Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture
, Article Diamond and Related Materials ; Volume: 40 , 2013 , Pages: 107-114 ; 09259635 (ISSN) ; Shokrgozar, M. A ; Mehrjoo, M ; Tamjid, E ; Simchi, A ; Sharif University of Technology
2013
Abstract
Recently, nanodiamonds have attracted interest in biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds, and biosensors. We incorporated diamond nanoparticles in alginate-bioactive glass films by electrophoretic process to prepare functional coatings for biomedical implants. Turbidity examination by time-resolved laser transmittance measurement revealed that a stable multi-component aqueous suspension of alginate, bioactive glass and diamond particles could be obtained at concentrations of 0.6, 1.3, and 0.65 g/l, respectively. Uniform films with ~ 5 μm thickness were deposited on 316 stainless steel foils by employing constant field...
Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa
, Article Journal of Biomedical Materials Research - Part A ; 2020 ; Abolhassani Targhi, A ; Shamsi, F ; Heidari, F ; Salehi Moghadam, Z ; Mirzaie, A ; Behdad, R ; Moghtaderi, M ; Akbarzadeh, I ; Sharif University of Technology
John Wiley and Sons Inc
2020
Abstract
In the current study, niosome-encapsulated tobramycin based on Span 60 and Tween 60 was synthesized and its biological efficacies including anti-bacterial, anti-efflux, and anti-biofilm activities were investigated against multidrug resistant (MDR) clinical strains of Pseudomonas aeruginosa. The niosomal formulations were characterized using scanning electron microscopy, transmission electron microscopy, and dynamic light scattering measurement. The encapsulation efficiency was found to be 69.54% ±; 0.67. The prepared niosomal formulations had a high storage stability to 60 days with small changes in size and drug entrapment, which indicates that it is a suitable candidate for pharmaceutical...
Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework
, Article Materials Science and Engineering C ; Volume 104 , 2019 ; 09284931 (ISSN) ; Ahadian, M. M ; Soufi Zomorod, M ; Torabi, S ; Babaie, A ; Hosseinzadeh, S ; Soleimani, M ; Hatami, N ; Wei, Z. H ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Metal-organic framework (MOF) based graphene oxide (GO) recently merits of attention because of the relative correspondence of GO with metal ions and organic binding linkers. Furthermore, introducing the GO to the Co-MOF to make a new nanoporous hybrid have are improved the selectivity and stability of the Co-MOF. Here the graphene oxide/cobalt metal organic framework (GO/Co-MOF) was synthesized by a solvothermal process using cobalt salt and terephthalic acid and used for biocidal activity, against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy were confirmed...
Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa
, Article Journal of Biomedical Materials Research - Part A ; Volume 109, Issue 6 , 2021 , Pages 966-980 ; 15493296 (ISSN) ; Abolhassani Targhi, A ; Shamsi, F ; Heidari, F ; Salehi Moghadam, Z ; Mirzaie, A ; Behdad, R ; Moghtaderi, M ; Akbarzadeh, I ; Sharif University of Technology
John Wiley and Sons Inc
2021
Abstract
In the current study, niosome-encapsulated tobramycin based on Span 60 and Tween 60 was synthesized and its biological efficacies including anti-bacterial, anti-efflux, and anti-biofilm activities were investigated against multidrug resistant (MDR) clinical strains of Pseudomonas aeruginosa. The niosomal formulations were characterized using scanning electron microscopy, transmission electron microscopy, and dynamic light scattering measurement. The encapsulation efficiency was found to be 69.54% ±; 0.67. The prepared niosomal formulations had a high storage stability to 60 days with small changes in size and drug entrapment, which indicates that it is a suitable candidate for pharmaceutical...