Loading...
Search for: phase-velocity
0.009 seconds

    Phase and Group Velocity of Scalar Waves in One Dimensional Disorderd Media

    , M.Sc. Thesis Sharif University of Technology Rezanezhad, Vahid (Author) ; Rahimi Tabar, Mohammad Reza (Supervisor)
    Abstract
    In this thesis we study the dispersion of one-dimensional scalar waves in a random media. We used the finite difference method to obtain the numerical solution of wave equation in this media. Then we were able to find wave signals for different disorder intensities and at different distances from the source. Using the Wavelet Transform, intresting features such as phase and group velocity can be studied. The Morlet function is used as the mother wavelet for decomposing the signals at different places. Cross-correlation functions of Wavlet transforms of the signals at different positions are used to obtain phase velocity and its dependence on frequency. We show how the phase velocity at the... 

    Nondestructive Test in Geopolymer Concrete with Aid of Ultrasonic Waves

    , M.Sc. Thesis Sharif University of Technology Nouri, Ali (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    In recent decades, particle composite materials have a wide range of applications in engineering. Particle composites are a group of heterogeneous materials with different length scales and are characterized by particles that are randomly distributed in a matrix phase. Geopolymer concrete is a special type of concrete that its binder is made by reacting alumina and silicate carriers with an activating agent and in recent years with the expansion of its use has reduced the amount of cement consumption. In addition to the many advantages of geopolymer concrete, it has disadvantages in terms of setting time. That is why the use of cement has been proposed as a solution to the problem. This... 

    Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 43, Issue 1 , November , 2010 , Pages 387-397 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    The free longitudinal vibration of tapered nanowires is investigated in the context of nonlocal continuum theory. The problem is studied for the nanowires with linearly varied radii under fixedfixed and fixedfree boundary conditions. In order to assess the problem in a more general form, a perturbation technique is proposed based on the Fredholm alternative theorem. The natural frequencies, corresponding mode shapes, and phase velocities of the tapered nanowires are derived analytically up to the second-order perturbation for different boundary conditions. The predicted results by the perturbation technique are successfully verified with those of the exact solution. The obtained results... 

    Inverse scattering problem of reconstruction of an embedded micro-/nano-size scatterer within couple stress theory with micro inertia

    , Article Mechanics of Materials ; Volume 103 , 2016 , Pages 123-134 ; 01676636 (ISSN) Goodarzi, A ; Fotouhi, M ; Shodja, H. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    As long as the size of the embedded scatterer in comparison to the internal length scale of its surrounding elastic matrix is large, then the linear sampling method (LSM) and singular sources method (SSM) can be used in conjunction with classical theory of elasticity to reconstruct the size of the scatterer with reasonable accuracy. On the other hand, for the micro-/nano-size scatterer this treatment ceases to hold due to the shortcomings of classical theory of elasticity. Moreover, in the realm of this theory, wave propagation through a homogeneous medium is nondispersive on the macro-scale even for high frequency waves. This outcome is incompatible with the practical observations. A remedy... 

    On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell

    , Article Engineering with Computers ; Volume 35, Issue 4 , 2019 , Pages 1375-1389 ; 01770667 (ISSN) Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer London  2019
    Abstract
    Due to rapid development of process manufacturing, composite materials with porosity have attracted commercial attention in promoting engineering applications. For this regard, in this research wave propagation-thermal characteristics of a size-dependent graphene nanoplatelet-reinforced composite (GNPRC) porous cylindrical nanoshell in thermal environment are investigated. The effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT). The governing equations of the laminated composite cylindrical nanoshell in thermal environment have been evolved using Hamilton’s principle and solved with the assistance of the analytical method. For the first time, wave... 

    Experimental modeling and uncertainty analysis of dispersed phase holdup at flooding in a pulsed disc-doughnut column, case study: Response surface methodology and Monte-Carlo simulation

    , Article Progress in Nuclear Energy ; Volume 141 , 2021 ; 01491970 (ISSN) Shakib, B ; Ghaemi, A ; Hemmati, A ; Asadollahzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study aims to investigate, optimize, and simulate the dispersed phase holdup at flooding conditions for the standard physical systems in a pulsed extraction column with the disc-doughnut configuration. The interaction impacts for operational parameters (pulse intensity and organic and aqueous phase velocities) and interfacial tension (systems type) were examined using the response surface approach. A novel correlation for the dependent parameter, namely holdup at flooding based on the quadratic model, was developed with the central composition design methodology. A desirable agreement between actual data and calculated data from the proposed model was observed because of the high... 

    Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 5 , 2021 , Pages 640-658 ; 15397734 (ISSN) Habibi, M ; Mohammadi, A ; Safarpour, H ; Shavalipour, A ; Ghadiri, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this article, wave propagation characteristics of a size-dependent laminated composite nanostructure coupled with a piezoelectric actuator (PA) is investigated. In order to consider the effects of small scale, the governing equations of the laminated composite nanostructure coupled with PA are derived using Hamilton’s principle based on the nonlocal strain gradient theory (NSGT). The differential equations of motion are solved with the assistance of the analytical method. Afterward, a parametric study is carried out to investigate the effects of the PA thickness, wave number, angular velocity and the ply angle on the value of phase velocity. The results show that the ply angle plays an... 

    Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 75, Issue 3-4 , January , 2011 , Pages 327-335 ; 09204105 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Simplicity of manufacturing and high reliability of airlift pumps have promoted these pumps to be used in different industries, such as petrochemical and oil industries, especially in oil recovery from dead wells. One of the main parameters affecting the performance of these pumps is two-phase flow regime in the main pipe of the pump. In this research, experimental data are utilized to investigate the influence of the flow regimes on the performance of an airlift pump. The data are obtained for air-water two-phase flow in a vertical pipe with a diameter of d = 50. mm and an aspect ratio of L/d = 120. In this study, the gas liquid upward two-phase flow regime in the upriser pipe is... 

    Two-dimensional CFD simulation of chemical reactions in tapered-in and tapered-out fluidized bed reactors

    , Article Advanced Powder Technology ; 2018 ; 09218831 (ISSN) Askaripour, H ; Dehkordi, A. M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This article presents a simulation study of tapered-in and tapered-out fluidized bed reactors to investigate the influences of apex angle on the fractional conversion and the pressure drop of the fluidized beds in the presence of two types of chemical reaction with gas volume increase and reduction. The 2D behavior of tapered-in and -out fluidized beds was also compared with a columnar one from fractional conversion and bed pressure drop point of views. To validate the simulation results, the numerical predictions for the expansion ratio and the pressure drop of a tapered fluidized bed were compared with experimental data and good agreement was observed. The obtained simulation results... 

    Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 5 , 2019 ; 16785878 (ISSN) Habibi, M ; Mohammadgholiha, M ; Safarpour, H ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this article, wave propagation characteristics of a size-dependent graphene nanoplatelet (GNP) reinforced composite cylindrical nanoshell coupled with piezoelectric actuator (PIAC) and surrounded with viscoelastic foundation is presented. The effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT) which is an accurate theory employing exact length scale parameter and nonlocal constant. The governing equations of the GNP composite cylindrical nanoshell coupled with PIAC have been evolved using Hamilton’s principle and solved with assistance of the analytical method. For the first time in the current study, wave propagation electrical behavior of a GNP composite... 

    Two-dimensional CFD simulation of chemical reactions in tapered-in and tapered-out fluidized bed reactors

    , Article Advanced Powder Technology ; Volume 30, Issue 1 , 2019 , Pages 136-147 ; 09218831 (ISSN) Askaripour, H ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This article presents a simulation study of tapered-in and tapered-out fluidized bed reactors to investigate the influences of apex angle on the fractional conversion and the pressure drop of the fluidized beds in the presence of two types of chemical reaction with gas volume increase and reduction. The 2D behavior of tapered-in and -out fluidized beds was also compared with a columnar one from fractional conversion and bed pressure drop point of views. To validate the simulation results, the numerical predictions for the expansion ratio and the pressure drop of a tapered fluidized bed were compared with experimental data and good agreement was observed. The obtained simulation results... 

    Two-dimensional CFD simulation of chemical reactions in tapered-in and tapered-out fluidized bed reactors

    , Article Advanced Powder Technology ; Volume 30, Issue 1 , 2019 , Pages 136-147 ; 09218831 (ISSN) Askaripour, H ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This article presents a simulation study of tapered-in and tapered-out fluidized bed reactors to investigate the influences of apex angle on the fractional conversion and the pressure drop of the fluidized beds in the presence of two types of chemical reaction with gas volume increase and reduction. The 2D behavior of tapered-in and -out fluidized beds was also compared with a columnar one from fractional conversion and bed pressure drop point of views. To validate the simulation results, the numerical predictions for the expansion ratio and the pressure drop of a tapered fluidized bed were compared with experimental data and good agreement was observed. The obtained simulation results... 

    The performance of pulsed scale-up column for permeable of selenium and tellurium ions to organic phase, case study: Disc and doughnut structure

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 157 , 2020 Shakib, B ; Torkaman, R ; Torab Mostaedi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A research investigation of the overall mass transfer coefficients, holdup and mean drops of dispersed phase as well as slip and characteristic velocities were carried out in the pulsed scale-up column with disc and doughnut structure for extraction of tellurium and selenium from a hydrochloric acid medium with TBP extractant. The impact of operating conditions containing the pulse intensity, inlet aqueous and solvent phase velocities have been studied on the mass transfer rates, and the special column characteristic. By considering the reactive extraction situations, modified models were derived for predicting of holdup, d32, and slip velocity in this extractor. The axial diffusion model... 

    Mass transfer evaluation in a multi-impeller extractor for reactive Mo (VI) extraction from aqueous Sulphate solution by utilizing coupling of acid and solvating Extractants

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 56, Issue 6 , 2020 , Pages 1995-2006 Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Asadollahzadeh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    In this study, mass transfer experimental data from the present column with 70 cm active column length and 11.3 cm internal diameter were interpreted for molybdenum extraction with a mixture of D2EHPA and TBP in terms of the axial diffusion model. The influence of extractants concentration and the initial aqueous pH have studied in the bench-scale experiments. The experimental finding demonstrated that the synergistic solvent extraction increases the constancy of the extracted complexes for transfer into the organic phase. The effect of operating parameters, including agitation speed and inlet phase velocities on the overall mass transfer coefficients under the chemical reaction system, is... 

    Exact hydrodynamic description of pilot plant Oldshue-Rushton contactor: a case study with the introduction of selenium and tellurium into reaction system

    , Article International Journal of Environmental Analytical Chemistry ; 2020 Shakib, B ; Torkaman, R ; Torab Mostaedi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    In this paper, the hydrodynamic behaviour of the chemical reaction system (selenium, tellurium, and TBP) was interpreted in the Oldshue-Rushton extraction column. The optimum operating parameters for extracting the selenium and tellurium from chloride medium were carried out by using the batch experiments. The feed acidity of 5 molar and solvent phase with 20% (v/v) TBP in kerosene were optimised to examine the hydrodynamic parameters of the mentioned column. The impacts of operating variables such as rotor speed, inlet aqueous phase velocity, and inlet solvent phase velocity on the dispersed phase hold-up, mean drop size, slip velocity, drop size distribution, and extraction rate were... 

    Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell

    , Article Waves in Random and Complex Media ; Volume 31, Issue 6 , 2021 , Pages 1655-1681 ; 17455030 (ISSN) Ebrahimi, F ; Mohammadi, K ; Barouti, M. M ; Habibi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this article, wave propagation behavior of a size-dependent spinning graphene nanoplatelet-reinforced composite (GNPRC) cylindrical nanoshell with porosity is presented. The effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT), this accurate theory employs exact length scale parameter and nonlocal constant. The governing equations of GNPRC cylindrical nanoshell coupled with piezoelectric actuator (PIAC) are evolved by minimum potential energy principle and solved by the analytical method. For the first time in the current study, wave propagation-porosity behavior of a GNPRC cylindrical nanoshell coupled with PIAC is examined based on NSGT. The results show... 

    Multi-scale dispersive gradient elasticity model with rotation for the particulate composite

    , Article Composite Structures ; Volume 294 , 2022 ; 02638223 (ISSN) Nouri, A ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Research on the characteristics of composites material has received enormous interest in recent years. The multi-scale nature of composite material leads to employing advanced techniques. Moreover, the presence of a wave with the high-frequency source adds complexity to the analysis. In this paper, a novel multi-scale elasticity model was developed to predict the wave dispersion property of particulate composites. The methodology was based on the simultaneous participation of translational and rotational degrees of freedom in motion equations. The method scheme of gaining motion equations was accomplished by using Taylor's expansion as a continualization method. The framework of the motion... 

    Exact hydrodynamic description of pilot plant Oldshue-Rushton contactor: a case study with the introduction of selenium and tellurium into reaction system

    , Article International Journal of Environmental Analytical Chemistry ; Volume 102, Issue 16 , 2022 , Pages 4191-4207 ; 03067319 (ISSN) Shakib, B ; Torkaman, R ; Torab Mostaedi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, the hydrodynamic behaviour of the chemical reaction system (selenium, tellurium, and TBP) was interpreted in the Oldshue-Rushton extraction column. The optimum operating parameters for extracting the selenium and tellurium from chloride medium were carried out by using the batch experiments. The feed acidity of 5 molar and solvent phase with 20% (v/v) TBP in kerosene were optimised to examine the hydrodynamic parameters of the mentioned column. The impacts of operating variables such as rotor speed, inlet aqueous phase velocity, and inlet solvent phase velocity on the dispersed phase hold-up, mean drop size, slip velocity, drop size distribution, and extraction rate were...