Loading...
Search for: phosphoprotein
0.005 seconds

    FBAR Syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner

    , Article Scientific Reports ; Volume 3 , 2013 ; 20452322 (ISSN) Ramesh, P ; Baroji, Y. F ; S. Reihani, S. Nader ; Stamou, D ; Oddershede, L. B ; Bendix, P. M ; Sharif University of Technology
    2013
    Abstract
    Syndapin 1 FBAR, a member of the Bin-amphiphysin-Rvs (BAR) domain protein family, is known to induce membrane curvature and is an essential component in biological processes like endocytosis and formation and growth of neurites. We quantify the curvature sensing of FBAR on reconstituted porcine brain lipid vesicles and show that it senses membrane curvature at low density whereas it induces and reinforces tube stiffness at higher density. FBAR strongly up-concentrates on the high curvature tubes pulled out of Giant Unilamellar lipid Vesicles (GUVs), this sorting behavior is strongly amplified at low protein densities. Interestingly, FBAR from syndapin 1 has a large affinity for tubular... 

    Inferring causal molecular networks: Empirical assessment through a community-based effort

    , Article Nature Methods ; Volume 13, Issue 4 , 2016 , Pages 310-322 ; 15487091 (ISSN) Hill, S. M ; Heiser, L.M ; Cokelaer, T ; Linger, M ; Nesser, N. K ; Carlin, D. E ; Zhang, Y ; Sokolov, A ; Paull, E. O ; Wong, C. K ; Graim, K ; Bivol, A ; Wang, H ; Zhu, F ; Afsari, B ; Danilova, L. V ; Favorov, A. V ; Lee, W. S ; Taylor, D ; Hu, C. W ; Long, B. L ; Noren, D. P ; Bisberg, A. J ; Mills, G. B ; Gray, J. W ; Kellen, M ; Norman, T ; Friend, S ; Qutub, A. A ; Fertig, E. J ; Guan, Y ; Song, M ; Stuart, J. M ; Spellman, P. T ; Koeppl, H ; Stolovitzky, G ; Saez Rodriguez, J ; Mukherjee, S ; Afsari, B ; Al-Ouran, R ; Anton, B ; Arodz, T ; Askari Sichani, O ; Bagheri, N ; Berlow, N ; Bisberg, A. J ; Bivol, A ; Bohler, A ; Bonet, J ; Bonneau, R ; Budak, G ; Bunescu, R ; Caglar, M ; Cai, B ; Cai, C ; Carlin, D. E ; Carlon, A ; Chen, L ; Ciaccio, M. F ; Cokelaer, T ; Cooper, G ; Coort, S ; Creighton, C. J ; Daneshmand, S. M. H ; De La Fuente, A ; Di Camillo, B ; Danilova, L. V ; Dutta-Moscato, J ; Emmett, K ; Evelo, C ; Fassia, M. K. H ; Favorov, A. V ; Fertig, E. J ; Finkle, J. D ; Finotello, F ; Friend, S ; Gao, X ; Gao, J ; Garcia Garcia, J ; Ghosh, S ; Giaretta, A ; Graim, K ; Gray, J. W ; Großeholz, R ; Guan, Y ; Guinney, J ; Hafemeister, C ; Hahn, O ; Haider, S ; Hase, T ; Heiser, L. M ; Hill, S. M ; Hodgson, J ; Hoff, B ; Hsu, C. H ; Hu, C. W ; Hu, Y ; Huang, X ; Jalili, M ; Jiang, X ; Kacprowski, T ; Kaderali, L ; Kang, M ; Kannan, V ; Kellen, M ; Kikuchi, K ; Kim, D. C ; Kitano, H ; Knapp, B ; Komatsoulis, G ; Koeppl, H ; Krämer, A ; Kursa, M. B ; Kutmon, M ; Lee, W. S ; Li, Y ; Liang, X ; Liu, Z ; Liu, Y ; Long, B. L ; Lu, S ; Lu, X ; Manfrini, M ; Matos, M. R. A ; Meerzaman, D ; Mills, G. B ; Min, W ; Mukherjee, S ; Müller, C. L ; Neapolitan, R. E ; Nesser, N. K ; Noren, D. P ; Norman, T ; Oliva, B ; Opiyo, S. O ; Pal, R ; Palinkas, A ; Paull, E. O ; Planas Iglesias, J ; Poglayen, D ; Qutub, A. A ; Saez Rodriguez, J ; Sambo, F ; Sanavia, T ; Sharifi-Zarchi, A ; Slawek, J ; Sokolov, A ; Song, M ; Spellman, P. T ; Streck, A ; Stolovitzky, G ; Strunz, S ; Stuart, J. M ; Taylor, D ; Tegnér, J ; Thobe, K ; Toffolo, G. M ; Trifoglio, E ; Unger, M ; Wan, Q ; Wang, H ; Welch, L ; Wong, C. K ; Wu, J. J ; Xue, A. Y ; Yamanaka, R ; Yan, C ; Zairis, S ; Zengerling, M ; Zenil, H ; Zhang, S ; Zhang, Y ; Zhu, F ; Zi, Z ; Sharif University of Technology
    Nature Publishing Group  2016
    Abstract
    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was... 

    Nonparametric simulation of signal transduction networks with semi-synchronized update

    , Article PLoS ONE ; Volume 7, Issue 6 , 2012 ; 19326203 (ISSN) Nassiri, I ; Masoudi Nejad, A ; Jalili, M ; Moeini, A ; Sharif University of Technology
    2012
    Abstract
    Simulating signal transduction in cellular signaling networks provides predictions of network dynamics by quantifying the changes in concentration and activity-level of the individual proteins. Since numerical values of kinetic parameters might be difficult to obtain, it is imperative to develop non-parametric approaches that combine the connectivity of a network with the response of individual proteins to signals which travel through the network. The activity levels of signaling proteins computed through existing non-parametric modeling tools do not show significant correlations with the observed values in experimental results. In this work we developed a non-parametric computational...