Loading...
Search for: photocatalytic-application
0.003 seconds

    Electrochemical behavior of S-doped nanostructured TiO2 layer synthesized with PEO process for photocatalytic applications

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 487-491 ; ISSN: 10226680 ; ISBN: 9783037859070 Ahmadzadeh, M ; Ghorbani, M ; Sharif University of Technology
    Abstract
    Sulfur doped and pure micro-nanoporous TiO2 film were synthesized with PEO method to produce a film with a high surface area for photocatalysis applications. The effect of applied voltage and electrolyte concentration on the microstructure and photocatalytic properties of the prepared layer were investigated via SEM, XRD, EIS and DRS studies. Electrochemical Impedance Spectroscopy (EIS) was carried out in order to determine the corrosion and electrochemical properties of the produced layer. It was found that although the barrier layer resistance decreases with the voltage, the layers porosity and consequently the surface area increases. Finally the XRD and DRS spectrums were correlated with... 

    Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    , Article Thin Solid Films ; Volume 605 , April , 2015 , Pages 2–19 ; 00406090 (ISSN) Samadi, M ; Zirak, M ; Naseri, A ; Khorashadizade, E ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured... 

    Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: Good for photocatalysis, bad for electron transfer

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 50 , 2017 ; 00223727 (ISSN) Mohammadpour, R ; Sharif University of Technology
    Abstract
    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the... 

    Evaluation of the reaction mechanism for photocatalytic degradation of organic pollutants with MIL-88A/BiOI structure under visible light irradiation

    , Article Research on Chemical Intermediates ; Volume 45, Issue 3 , 2019 , Pages 1341-1356 ; 09226168 (ISSN) Gholizadeh Khasevani, S ; Gholami, M. R ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this study, we synthesized novel visible light photocatalyst MIL-88A/BiOI using depositing BiOI particles on the surface of a metal–organic framework (MIL-88A). Photocatalytic application of binary composite MIL-88A/BiOI was obtained by discoloration of Methylene Blue (MB) and Acid Blue 92 (AB92) in aqueous solution under visible light source. The photodegradation experiments for treating organic dyes show that the MIL-88A/BiOI heterojunction structure possess a higher rate for decomposition of dyes due to the decreased aggregation of the BiOI nanoparticles, effective charge carrier separation and the synergistic effect between MIL-88A and BiOI samples as a heterojunction. Also, the... 

    Green synthesis of ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite via MOF templating as a reusable heterogeneous nanocatalyst and nano-photocatalyst

    , Article Materials Research Bulletin ; Volume 138 , 2021 ; 00255408 (ISSN) Gholizadeh Khasevani, S ; Shahsavari, S ; Gholami, M.R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    An environmentally friendly heterogeneous ternary carbon dots (CDs)/MIL-88B (Fe)/Bi2S3 nanocomposite was synthesized by a multistep method. In this study, we have studied low-temperature calcination with relatively inexpensive reactants. The sufficient CD arrays were generated by loading the glucose molecules into the pores of an as-obtained metal-organic framework (MOF), i.e. MIL-88B (Fe)), by heating to 200 °C. Fabricated nanocomposite structures were characterized by FT-IR, XRD, EIS, SEM, TEM, BET, and TGA techniques, demonstrating the decoration of the Bi2S3 on the CDs/MIL-88B (Fe) nanocomposite surface. MOF templating has been chosen as a systemic method for limited size CD formation...