Loading...
Search for: photoexcited-electrons
0.005 seconds

    Differentiation of human neural stem cells into neural networks on graphene nanogrids

    , Article Journal of Materials Chemistry B ; Volume 1, Issue 45 , 2013 , Pages 6291-6301 ; 20507518 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    Graphene nanogrids (crossed graphene nanoribbons synthesized by the oxidative unzipping of multi-walled carbon nanotubes) on a SiO2 matrix containing TiO2 nanoparticles (NPs) were applied as a photocatalytic stimulator in the accelerated differentiation of human neural stem cells (hNSCs) into two-dimensional neural networks. The hydrophilic graphene nanogrids exhibited patterned proliferations of hNSCs (consistent with patterns of the nanogrids), in contrast with the usual random growths occurring on quartz substrates. The number of cell nuclei differentiated on reduced graphene oxide nanoribbon (rGONR) grid/TiO2 NPs/SiO2 increased ∼5.9 and 26.8 fold compared to the number of cells on quartz... 

    Graphene jet nanomotors in remote controllable self-Propulsion swimmers in pure water

    , Article Nano Letters ; Volume 16, Issue 9 , 2016 , Pages 5619-5630 ; 15306984 (ISSN) Akhavan, O ; Saadati, M ; Jannesari, M ; Sharif University of Technology
    American Chemical Society 
    Abstract
    A remote controllable working graphite nanostructured swimmer based on a graphene jet nanomotor has been demonstrated for the first time. Graphite particles with pyramidal-like morphologies were fabricated by the creation of suitable defects in wide high-purity graphite flakes followed by a severe sonication. The particles were able to be self-exfoliated in water after Na intercalation between the graphene constituents. The self-exfoliation resulted in jet ejection of graphene flakes from the end of the swimmers (with speeds as high as ∼7000 m/s), producing a driving force (at least ∼0.7 L (pN) where L (μm) is swimmer size) and consequently the motion of the swimmer (with average speed of... 

    Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation

    , Article Applied Surface Science ; Volume 371 , 2016 , Pages 592-595 ; 01694332 (ISSN) Rokhsat, E ; Akhavan, O ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Graphene oxide (GO) sheets with a low concentration (∼1 wt%) were deposited on surface of hydrothermally synthesized ZnO nanorod films. The deposited films were heat treated at 450 °C in order to achieve suitable GO/ZnO hybrid thin films for photocatalytic purposes. The photocatalytic activity of the nanocomposite films was investigated based on degradation of methylene blue (MB) dye which is a typical pollutant model. The GO/ZnO hybrid thin films could degrade higher MB (∼90%) than the bare ZnO nanorods (which showed only ∼75% degradation) after 450 min UV irradiation. A further significant improvement (resulting in a nearly complete degradation of MB) was achieved by exposing the GO/ZnO... 

    Adverse effects of graphene incorporated in TiO 2 photocatalyst on minuscule animals under solar light irradiation

    , Article Journal of Materials Chemistry ; Volume 22, Issue 43 , 2012 , Pages 23260-23266 ; 09599428 (ISSN) Akhavan, O ; Ghaderi, E ; Rahimi, K ; Sharif University of Technology
    2012
    Abstract
    The adverse effect of graphene-titanium oxide composite films (containing sheet-like surface morphology) on Caenorhabditis elegans nematodes (as a model for minuscule animals) was investigated in a solar light-induced photocatalytic process. X-ray photoelectron spectroscopy demonstrated photocatalytic reduction of the chemically exfoliated graphene oxide sheets included in the TiO 2 film. Furthermore, formation of TiC and Ti-O-C bonds in the composite film (obtained through annealing at 450 °C in air) resulted in a substantial delay in the recombination rate of the photoexcited electron-hole pairs and more efficient photocatalytic processes. The composite film showed a type of... 

    Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities

    , Article Surface and Coatings Technology ; Volume 204, Issue 21-22 , August , 2010 , Pages 3676-3683 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Antibacterial activity of sol-gel synthesized Ag-TiO2 nanocomposite layer (30nm) deposited on rough anatase (a) TiO2 thin film (~200nm in thickness) was investigated against Escherichia coli bacteria, in dark and also in exposure to UV light. The nanocomposite thin films were transparent with a surface plasmon resonance absorption band at a wavelength of 410nm. The metallic silver nanoparticles with an average diameter of 30nm and fcc crystalline structure were self-accumulated on surface of a mesoporous and aqueous TiO2 layer with a capillary pore structure having a pore radius of 3.0nm. By adding the silver nanoparticles in the TiO2 layer, recombination of the photoexcited electron-hole... 

    Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 126 , 2015 , Pages 313-321 ; 09277765 (ISSN) Akhavan, O ; Ghaderi, E ; Shirazian, S. A ; Sharif University of Technology
    Abstract
    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ~1. eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of...