Loading...
Search for: photon-correlation-spectroscopy
0.006 seconds
Total 37 records

    Effect of concentration on hydrodynamic size of magnetite-based ferrofluid as a potential MRI contrast agent

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; 2013 ; 09277757 (ISSN) Ahmadi, R ; Gu, N ; Sharif University of Technology
    2013
    Abstract
    In this work, ferrofluids containing dextran coated magnetite nanoparticles have been synthesized via co-precipitation method. FT-IR results verified presence of dextran molecules on the particles surface. TEM results showed that mean particle size is 7.23 nm, while mean hydrodynamic size determined via PCS technique varies between 39.8 and 125.8 nm depending on the ferrofluid concentration. The maximum hydrodynamic size was obtained in mid concentrations. To the best of our knowledge, effect of concentration on mean hydrodynamic size has not been systematically studied before. VSM results confirmed the superparamagnetic behavior of the synthesized nanoparticles with saturation magnetization... 

    Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine

    , Article Pharmaceutical Research ; Volume 33, Issue 2 , 2016 , Pages 417-432 ; 07248741 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Abedin Moghanaki, A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Purpose: The prime end of this study was to design a novel pH-sensitive as well as a PEGylated dendritic nanocarrier for both controllable and traceable gemcitabine delivery to cancerous cells. To accomplish this goal, we took advantage of a hybrid of nanoparticles including: mesoporous silica, graphene oxide and magnetite. Methods: The nanocarrier was prepared in a multi-step synthesis route. First, magnetite mesoporous silica was deposited on the graphene oxide matrix. Then, polyamidoamine dendrimers (up to generation 1.5) with pentaethylene hexamine end groups were grafted on the surface of the nanoparticles. In order to enhance the biostability, and as the next step, the nanocarrier was... 

    Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    , Article Materials Science and Engineering C ; Volume 62 , 2016 , Pages 626-633 ; 09284931 (ISSN) Esfandyari Manesh, M ; Darvishi, B ; Azizi Ishkuh, F ; Shahmoradi, E ; Mohammadi, A ; Javanbakht, M ; Dinarvand, R ; Atyabi, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an... 

    Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma

    , Article Biomaterials Research ; Volume 24, Issue 1 , 2020 Ghasemi Goorbandi, R ; Mohammadi, M. R ; Malekzadeh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Genistein (C15H10O5) is a soy isoflavone with anti-cancer properties such as inhibition of cell growth, proliferation and tumor invasion, but effective dosage against hematopoietic malignant cells was not in non-toxic range. This property cause to impede its usage as chemotherapeutic agent. Therefore, this hypothesis raised that synthesizing biocompatible nanoparticle could assist to prevail this struggle. Methods: Genistein covalently attached on Fe3O4 nanoparticles decorated with carboxymethylated chitosan to fabricate Fe3O4-CMC-genistein in alkaline circumstance. This obtained nanoparticles were evaluated by TEM, DLS, FTIR, XRD and VSM and its anti-cancer effect by growth rate... 

    Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus

    , Article Bioorganic Chemistry ; Volume 103 , October , 2020 Mirzaie, A ; Peirovi, N ; Akbarzadeh, I ; Moghtaderi, M ; Heidari, F ; Yeganeh, F. E ; Noorbazargan, H ; Mirzazadeh, S ; Bakhtiari, R ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Ciprofloxacin is an alternative to vancomycin for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The objective of this study was to optimization of niosomes encapsulated ciprofloxacin and evaluate their antibacterial and anti-biofilm efficacies against ciprofloxacin-resistant methicillin-resistant S. aureus (CR-MRSA) strains. Formulation of niosomes encapsulated ciprofloxacin were optimized by changing the proportions of Tween 60, Span 60, and cholesterol. The optimized ciprofloxacin encapsulated niosomal formulations based on Span 60 and Tween 60 were prepared and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and... 

    Photoluminescent carbon quantum dot/poly-L-Lysine core-shell nanoparticles: A novel candidate for gene delivery

    , Article Journal of Drug Delivery Science and Technology ; Volume 61 , 2021 ; 17732247 (ISSN) Hasanzadeh, A ; Mofazzal Jahromi, M. A ; Abdoli, A ; Mohammad Beigi, H ; Fatahi, Y ; Nourizadeh, H ; Zare, H ; Kiani, J ; Radmanesh, F ; Rabiee, N ; Jahani, M ; Mombeiny, R ; Karimi, M ; Sharif University of Technology
    Editions de Sante  2021
    Abstract
    Cationic polymers such as poly-L-lysine (PLL) are able to interact electrostatically with DNA to produce polymeric systems with nanometric diameters due to the neutralization and accumulation of DNA. This study integrates the outstanding properties of carbon quantum dots (CQDs) with PLL to develop a novel gene delivery vehicle with a core-shell hybrid nanostructure. The CQD/PLL core-shell nanoparticles (NPs) were, therefore, synthesized in such a way that they had narrow size distribution and an average diameter under 10 nm, both of which were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy exhibited that... 

    Supercritical carbon dioxide utilization in drug delivery: Experimental study and modeling of paracetamol solubility

    , Article European Journal of Pharmaceutical Sciences ; Volume 177 , 2022 ; 09280987 (ISSN) Bagheri, H ; Notej, B ; Shahsavari, S ; Hashemipour, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the present study, the solubility of paracetamol in supercritical CO2 is measured at temperatures between 311 and 358 K and pressures between 95 and 265 bar. It was shown that the solubility of paracetamol through a static solubility measurement method was between 0.3055 × 10−6 to 16.3582 × 10−6 based on mole fraction. The obtained experimental solubility data revealed the direct effect of pressure on the paracetamol experimental data, while the temperature has a dual effect of both increasing and decreasing effect considering the shifting point known as crossover pressure which was measured to be around 110 bar for paracetamol. Besides, two theoretical approaches were applied to predict... 

    Silane functionalization of nanodiamond for polymer nanocomposites-effect of degree of silanization

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 506 , 2016 , Pages 254-263 ; 09277757 (ISSN) Hajiali, F ; Shojaei, A ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The silanization of nanodiamond (ND) was successfully carried out by using the esterification reaction of hydrolyzed vinyltrimethoxysilane (VTS) in alcoholic solution. The surface carboxylic group of ND was first enhanced by thermal oxidation to increase the degree of esterification reaction. The extent of silane functionalization of ND was controlled by varying the weight ratio of VTS and oxidized ND (oxND), from 2:1 to 10:1 (w/w) in the functionalization reaction medium. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) revealed that the highest degree of silanization occurred at VTS/oxND of 5:1 (w/w), while more silane concentrations resulted in... 

    The role of polyethylene glycol size in chemical spectra, cytotoxicity, and release of pegylated nanoliposomal cisplatin

    , Article Assay and Drug Development Technologies ; Volume 17, Issue 5 , 2019 , Pages 231-239 ; 1540658X (ISSN) Shirzad, M ; Jamehbozorgi, S ; Akbarzadeh, I ; Aghabozorg, H. R ; Amini, A ; Sharif University of Technology
    Mary Ann Liebert Inc  2019
    Abstract
    This study aimed to synthesize methoxy polyethylene glycol propionaldehyde (mPEG20,000-ALD) for the preparation of PEGylated nanoliposomal cisplatin. Nanocarriers such as liposomes are developed for a wide range of drug delivery systems. PEG with high molecular weight (Mw) is used to coat the liposomes. In this study, simulated Fourier transform infrared (FTIR) spectra of mPEG-ALD were obtained using density functional theory (DFT) calculations and then compared with actual FTIR spectrum of mPEG20,000-ALD (Mw = 20 kDa). We found that the intensity of C = O stretching vibration at 1,700 cm-1 related to the carbonyl functional group of mPEG20,000-ALD was very weak. The results of DFT... 

    Poly-L-lysine/hyaluronan nanocarriers as a novel nanosystem for gene delivery

    , Article Journal of Microscopy ; Volume 287, Issue 1 , 2022 , Pages 32-44 ; 00222720 (ISSN) Souri, M ; Bagherzadeh, M. A ; Mofazzal Jahromi, M. A ; Mohammad-Beigi, H ; Abdoli, A ; Mir, H ; Roustazadeh, A ; Pirestani, M ; Sahandi Zangabad, P ; Kiani, J ; Bakhshayesh, A ; Jahani, M ; Joghataei, M. T ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The present research comes up with a novel DNA-loaded poly-L-lysine (PLL)/hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to analyse the interaction of the molecules as well as the physicochemical properties of the NCs. The NCs showed a negative charge of –24 ± 3 mV, with an average size of 138 ±... 

    Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review

    , Article Journal of Environmental Management ; Volume 313 , 2022 ; 03014797 (ISSN) Tavakoli, A ; Rahimi, K ; Saghandali, F ; Scott, J ; Lovell, E ; Sharif University of Technology
    Academic Press  2022
    Abstract
    In recent years, the importance of capturing CO2 has increased due to the necessity of minimizing climate change and the detrimental effects of CO2 emissions from industrial processes. CO2 absorption, as one of the most mature carbon capture technologies, has been improved by introducing nanosized particles into liquid absorbents. Nanofluids have been the subject of interest in many studies recently due to their tremendous impact on absorption. This review comprehensively examines the CO2 absorption behavior for nanofluids through the investigation of different absorption systems. Potential mechanisms for improving the absorption/regeneration performance of nanoabsorbents as well as the... 

    Determination of spermine and spermidine in meat with a ratiometric fluorescence nanoprobe and a combinational logic gate

    , Article Food Chemistry ; Volume 384 , 2022 ; 03088146 (ISSN) Abbasi-Moayed, S ; Bigdeli, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A ratiometric fluorescent nanoprobe is developed with a wide color variation for visual determination of spermine (SP) and spermidine (SD) in meat samples. The green emission provided from the combination of yellow emissive quantum dots and blue emissive carbon dots turns into pink when SP or SD are present. The results show that the developed sensor has good linearity in the range of 0.5–10 and 0.5–80 µM for SP and SD and suitable detection limits were achieved including 0.2 and 2.1 µM for SP and SD. The probe was highly selective in the presence of amino acids and other biogenic amines. RGB indices were extracted to build a combinational logic gate for visual and simultaneous detection of... 

    Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors

    , Article Bioactive Materials ; Volume 11 , 2022 , Pages 107-117 ; 2452199X (ISSN) Khodaei, A ; Jahanmard, F ; Madaah Hosseini, H. R ; Bagheri, R ; Dabbagh, A ; Weinans, H ; Amin Yavari, S ; Sharif University of Technology
    KeAi Communications Co  2022
    Abstract
    Systemic chemotherapy has lost its position to treat cancer over the past years mainly due to drug resistance, side effects, and limited survival ratio. Among a plethora of local drug delivery systems to solve this issue, the combinatorial strategy of chemo-hyperthermia has recently received attention. Herein we developed a magneto-thermal nanocarrier consisted of superparamagnetic iron oxide nanoparticles (SPIONs) coated by a blend formulation of a three-block copolymer Pluronic F127 and F68 on the oleic acid (OA) in which Curcumin as a natural and chemical anti-cancer agent was loaded. The subsequent nanocarrier SPION@OA-F127/F68-Cur was designed with a controlled gelation temperature of... 

    Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite

    , Article International Journal of Biological Macromolecules ; Volume 75 , April , 2015 , Pages 248-257 ; 01418130 (ISSN) Vakilian, S ; Mashayekhan, S ; Shabani, I ; Khorashadizadeh, M ; Fallah, A ; Soleimani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The cellular microenvironment can be engineered through the utilization of various nano-patterns and matrix-loaded bioactive molecules. In this study, a multilayer system of electrospun scaffold containing chitosan nanoparticles was introduced to overcome the common problems of instability and burst release of proteins from nanofibrous scaffolds. Bovine serum albumin (BSA)-loaded chitosan nanoparticles was fabricated based on ionic gelation interaction between chitosan and sodium tripolyphosphate. Suspension electrospinning was employed to fabricate poly-e{open}-caprolacton (PCL) containing protein-loaded chitosan nanoparticles with a core-shell structure. To obtain the desired scaffold... 

    Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo

    , Article Acta Biomaterialia ; Volume 76 , 2018 , Pages 239-256 ; 17427061 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Molazem, M ; Al Jamal, K. T ; Baharvand, H ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC)... 

    Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes

    , Article International Journal of Pharmaceutics ; Volume 569 , 2019 ; 03785173 (ISSN) Ghafelehbashi, R ; Akbarzadeh, I ; Tavakkoli Yaraki, M ; Lajevardi, A ; Fatemizadeh, M ; Heidarpoor Saremi, L ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, optimized cephalexin-loaded niosomal formulations based on span 60 and tween 60 were prepared as a promising drug carrier system. The niosomal formulations were characterized using a series of techniques such as scanning electron microscopy, Fourier transformed infrared spectroscopy, dynamic light scattering, and zeta potential measurement. The size and drug encapsulation efficiency are determined by the type and composition of surfactant. The developed niosomal formulations showed great storage stability up to 30 days with low change in size and drug entrapment during the storage, making them potential candidates for real applications. Moreover, the prepared niosomes showed... 

    Laser irradiation for controlling size of TiO2-Zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide

    , Article Water Science and Technology ; Volume 80, Issue 5 , 2019 , Pages 864-873 ; 02731223 (ISSN) Abdollah, F ; Borghei, S. M ; Moniri, E ; Kimiagar, S ; Panahi, H. A ; Sharif University of Technology
    IWA Publishing  2019
    Abstract
    This study focused on the synthesis of TiO2-Zeolite nanocomposite through a sol-gel approach. The decrease in the size of the nanocomposite is considered a primary parameter to improve photocatalytic activity. In this regard, fabricated samples were exposed to laser irradiation (532 nm) for four different time intervals in order to investigate the size variation of the nanocomposite. FTIR, UV-Vis, XRD, DLS, SEM and EDX analyses were applied to characterize and determine the size of the products. An optimized nanocomposite sample, in term of the particle size, was used for photodegradation of 2,4-D herbicide from aqueous solution. Photodegradation was carried out under UV irradiation (12 W)... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and...