Loading...
Search for: photosensitizer
0.006 seconds
Total 21 records

    Evolution of roughness and photo-crystallization effect in ZnS-SiO 2 nanocomposite films

    , Article Nanotechnology ; Volume 16, Issue 6 , 2005 , Pages 944-948 ; 09574484 (ISSN) Taghavinia, N ; Lee, H. Y ; Makino, H ; Yao, T ; Sharif University of Technology
    2005
    Abstract
    Amorphous chalcogenides in the form of bulk or thin films are known as photosensitive materials that undergo changes in optical or structural properties upon irradiation. Here we study the optical properties of nanocomposite films of ZnS-SiO2 illuminated with ultraviolet (UV) light and relate them to the photo-induced evolution of roughness, as well as photo-crystallization effects in these films. We observe that upon UV irradiation a new crystalline phase of ZnSiO3 is formed in the nanocomposite film. This is accompanied by the evolution of surface roughness on the film. © 2005 IOP Publishing Ltd  

    Fabrication and Characterization of ZnO Composites Nanofibers by Electrospinning Method for Photocatalytic Application

    , Ph.D. Dissertation Sharif University of Technology Samadi Amin, Morasae (Author) ; Moshfegh, Ali Reza (Supervisor) ; Pourjavadi, Ali (Co-Advisor)
    Abstract
    In this research we focus on study and fabrication of ZnO composite nanofibers by electrospinning method for photocatalytic application. The most important challenges in the field of photocatalyst are photocatalytic activity under the visible light and efficiency enhancement. ZnO is a wide band gap semiconductor and it is not active under the visible light. In Iran, we have more than 300 sunny days in a year. Therefore fabrication and application of photocatalytic material with activity under the sun light that contained 40% of visible light is so vital in our country. In the first part of this project, ZnO-CNT nanofibers were fabricated and carbon doped in the crystal lattice of the ZnO.... 

    Analysis of Photo-Mechanical Response of Light Sensitive Homogeneous Hydrogels

    , M.Sc. Thesis Sharif University of Technology Jafari Khoshnabadi, Mohammad Amin (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Light-sensitive hydrogels are advanced materials with modern applications that have the ability to deform with light radiation at specific frequencies. Numerous studies have been conducted to identify the behavior and deformation of these materials. Most studies have experimentally investigated the light-sensitive behavior of hydrogels. On the other hand, modeling the behavior of light-sensitive hydrogels is very complicated, so that the use of these models is possible only in certain cases. Therefore, in the present study, the existing studies have been reviewed in order to simplify the relationships governing the deformation of light-sensitive hydrogels. In this regard, the deformation... 

    Modified Zeolitic Nanostructures: Synthesis, Characterization and the Investigation of Their Catalytic-Sorption-Antibacterial Applications

    , Ph.D. Dissertation Sharif University of Technology Padervand, Mohsen (Author) ; Gholami, Mohammad Reza (Supervisor) ; Gobal, Fereydoun (Co-Advisor)
    Abstract
    Modified zeolitic nanostructures were prepared by sol-gel, hydrothermal and coprecipitation methods. At first step, natural zeolite was used as a support for preparing the Ag/AgBr/TiO2 photocatalysts. Their photocatalytic properties were studied by degradation of pollutants and microorganism inactivation at the presence of different illumination source. These processes were mechanistically investigated and the results were explained. At second step, mordenite anocrystals, which synthesized by hydrothermal method, were used as an effective support to prepare the AgX/TiO2/MOR photocatalysts. Photocatalytic degradation of an azo dye performed over these nanocomposites and a mechanism suggested... 

    Preparation of Host-Guest Hydrogels Responsive to Environmental Stimuli based on Diazo Compounds for Drug Release

    , M.Sc. Thesis Sharif University of Technology Yousefi Adlsadabad, Samaneh (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Conventional chemotherapy methods impact both normal and cancerous cells; therefore, it is essential to design novel drug delivery systems in order to reduce drugs’ side effects. Having high retention time in blood and the capability of crossing blood-brain barriers are the characteristics of nano-scaled drug delivery systems.The research thesis is about the synthesis and characterization of the light-sensitive biocompatible nanogels with the core-shell structure with the intention of Doxorubicin anti-cancer drug delivery. These smart nanogels possess a hydrophobic core coated with hydrophilic starch polymeric chain modified with beta-cyclodextrin. The formation of the core-shell structure... 

    Synthesis of Solar Light Responsive Nanocatalysts and Investigation of their Performance in Water Splitting Reaction

    , M.Sc. Thesis Sharif University of Technology Mokhtari, Negin (Author) ; Rahman Setayesh, Shahrbanoo (Supervisor)
    Abstract
    Today, fossil fuels cause countless environmental pollutants, so replacing fossil fuels with clean energy sources is very important. Water splitting using light and a semiconductor is one of the new methods of producing oxygen and hydrogen, which due to its simplicity and cheapness, has attracted a lot of attention today. In this study, ZnMn2O4 photocatalyst nanoparticles were first loaded on a graphitic carbon nitride support in different ratios of ZnMn2O4 and carbon support by hydrothermal method. Then the photocatalysts were evaluated for evolution of oxygen and hydrogen photocatalysts through water splitting under visible light. In ZnMn2O4 / g-C3N4 (80:20) nanocomposite, the highest... 

    Metal–organic frameworks (MOFs) for cancer therapy

    , Article Materials ; Volume 14, Issue 23 , 2021 ; 19961944 (ISSN) Saeb, M. R ; Rabiee, N ; Mozafari, M ; Verpoort, F ; Voskressensky, L. G ; Luque, R ; Sharif University of Technology
    MDPI  2021
    Abstract
    MOFs exhibit inherent extraordinary features for diverse applications ranging from cataly-sis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic modification” mainly by changing linkers (by altering the type, length, functionality, and charge of the linkers) or node components within the MOF framework. Additionally, efforts are aimed towards manipulating the size and morphology of crystallite domains in... 

    Self-powered ultraviolet/visible photodetector based on graphene-oxide via triboelectric nanogenerators performing by finger tapping

    , Article Nanotechnology ; Volume 33, Issue 47 , 2022 ; 09574484 (ISSN) Ejehi, F ; Shooshtari, L ; Mohammadpour, R ; Asadian, E ; Sasanpour, P ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    Self-sufficient power sources provide a promising application of abundant electronic devices utilized in detection of ambient properties. Recently, triboelectric nanogenerators (TENGs) have been widely investigated to broaden the self-powered systems by converting the ambient mechanical agitations into electrical voltage and current. Graphene oxide (GO), not only for sensing applications but also as a brilliant energy-related nanomaterial, provides a wide range of controllable bandgap energies, as well as facile synthesis route. In this study, GO-based self-powered photodetectors have been fabricated by conflating the photosensitivity and triboelectric characteristics of freestanding GO... 

    Nanomaterials for photothermal and photodynamic cancer therapy

    , Article Applied Physics Reviews ; Volume 9, Issue 1 , 2022 ; 19319401 (ISSN) Nasseri, B ; Alizadeh, E ; Bani, F ; Davaran, S ; Akbarzadeh, A ; Rabiee, N ; Bahadori, A ; Ziaei, M ; Bagherzadeh, M ; Saeb, M. R ; Mozafari, M ; Hamblin, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    In recent years, the role of optically sensitive nanomaterials has become powerful moieties in therapeutic techniques and has become particularly emphasized. Currently, by the extraordinary development of nanomaterials in different fields of medicine, they have found new applications. Phototherapy modalities, such as photothermal therapy (PTT) by toxic heat generation and photodynamic therapy (PDT) by reactive oxygen species, are known as promising phototherapeutic techniques, which can overcome the limitations of conventional protocols. Moreover, nanomaterial-based PDT and PTT match the simultaneous immune therapy and increase the immune system stimulation resulting from the denaturation of... 

    Selective photooxygenation of dihydroartemisinic acid in a reusable microreactor with physically immobilized photocatalysts

    , Article Materials Research Bulletin ; Volume 145 , 2022 ; 00255408 (ISSN) Tamtaji, M ; Kazemeini, M ; Tyagi, A ; Roxas, A. P ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photocatalytic production of organic materials including Artemisinin has been hampered in the pharmaceutical industry because of low reusability and selectivity of photocatalysts. In this work, reusable photocatalysts were synthesized through novel physical and electrostatic immobilizations. After four reaction cycles of dihydroartemisinic acid (DHAA) photooxygenation using physically supported photosensitizers, the conversion was slightly reduced from 81 to 78%, indicating their high reusability. This occurred while maintaining the selectivity of the desired product above 85%, which was higher than that of the homogeneous photosensitizers. Then, a continuous-flow microreactor functionalized... 

    Gold-based hybrid nanostructures: more than just a pretty face for combinational cancer therapy

    , Article Biophysical Reviews ; Volume 14, Issue 1 , 2022 , Pages 317-326 ; 18672450 (ISSN) Khafaji, M ; Bavi, O ; Zamani, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    The early diagnosis together with an efficient therapy of cancer is essential to treat cancer patients and to enhance their quality of life. The use of nanostructures, as a newer technology, has demonstrated proven benefits as efficient cancer theranostic agents in numerous recent studies. Having a tunable surface plasmon resonance, gold nanostructures have been the subject of many recent studies as excellent imaging and photothermal therapy agents. However, the potential cytotoxicity and weak stability of gold nanostructures necessitate further modifications using biocompatible materials for biological applications. Based on the composition of the final structure, these gold-based hybrid... 

    Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers

    , Article Journal of Molecular Catalysis A: Chemical ; Volume 359 , 2012 , Pages 42-48 ; 13811169 (ISSN) Samadi, M ; Shivaee, H. A ; Zanetti, M ; Pourjavadi, A ; Moshfegh, A ; Sharif University of Technology
    2012
    Abstract
    Multi wall carbon nanotube (MWCNT) doped ZnO nanofibers were fabricated by electrospinning for the first time. We have successfully demonstrated the photocatalytic activity of doped nanofibers under visible light. Scanning electron microscopy showed that the diameter of MWCNT-doped ZnO nanofibers varied from 120 to 300 nm without agglomeration of MWCNT. Fourier transform infrared spectroscopy and X-ray diffraction studies proved the formation of ZnO bond and wurtzite structure with smaller crystal size in doped nanofibers. Raman spectra demonstrated slight shift in bond position after nanofiber doping, indicating the chemical bond between MWCNT and ZnO. X-ray photoelectron spectroscopy... 

    Mechanism Study of Photocatalytic Degradation of Several Hazardous Materials Using TiO2 Based Nano-sized Multi-Functionals Photocatalyst

    , Ph.D. Dissertation Sharif University of Technology Elahifard, Mohammad Reza (Author) ; Gholami, Mohammad Reza (Supervisor) ; Haghighi, Saeid (Supervisor)
    Abstract
    Apatite-coated Ag/AgBr/TiO2 was prepared by deposition of Ag as noble metal to generate electron-hole pairs by extending the excitation wavelength to visible light region, AgBr as photo-sensitizer to increasing yield of photo catalyst, and apatite as adsorption bio ceramic for adsorbing pollutants and micro organisms respectively. The bactericidal experiments in dark media indicated that only novel catalyst show inhibiting growth of bacteria. In this case Transmission electron microscopy image illustrated that catalyst nano particles adhere to the outer membrane of the cell and acts as inhibitor to nourish of bacteria from around media. The mechanism for deactivation E-Coli and B.Sub in the... 

    Synergism of oxygen vacancy and carbonaceous species on enhanced photocatalytic activity of electrospun ZnO-carbon nanofibers: Charge carrier scavengers mechanism

    , Article Applied Catalysis A: General ; Volume 466 , September , 2013 , Pages 153-160 ; 0926860X (ISSN) Samadi, M ; Shivaee, H. A ; Pourjavadi, A ; Moshfegh, A. Z ; Sharif University of Technology
    2013
    Abstract
    Novel ZnO-carbon and ZnO nanofibers were fabricated by electrospinning of polymer precursor followed by subsequent annealing in nitrogen and air, respectively. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) indicated the smooth and beadless nanofibers with wurtzite crystal structure. X-ray photoelectron spectroscopy (XPS) showed the presence of oxygen vacancies (VO) and chemisorbed O2 on the surface of the samples. Band gap narrowing of the ZnO-carbon nanofibers in comparison to ZnO were measured by diffuse reflectance spectroscopy (DRS). Photo-degradation of azo dye under the UV and visible light was evaluated and ZnO-carbon showed an enhancement in... 

    Acid blue 92 photocatalytic degradation in the presence of scavengers by two types photocatalyst

    , Article Environmental Progress and Sustainable Energy ; Volume 31, Issue 3 , 2012 , Pages 371-378 ; 19447442 (ISSN) Elahifard, M. R ; Gholami, M. R ; Sharif University of Technology
    Abstract
    Two types of nanosized photocatalyst, TiO 2 P-25 and ap/Ag/AgBr/TiO 2, were used for decolorization of Acid Blue 92 (AB92) in dark, visible light (V-L), and UV media. Under UV and V-L, the effect of three possible photodegradation processes of AB92 including photocatalytic degradation, self-photosensitization, and direct photolysis were studied. Results showed that in UV/photocatalysts, photocatalytic degradation is the major process for photodecolorization. However, in the presence of TiO 2, self-photosensitization has the major role under V-L. Because of the presence of AgBr as photoactive center in ap/Ag/AgBr/TiO 2, the main process is the photocatalytic degradation in V-L. By using... 

    Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates

    , Article Research on Chemical Intermediates ; Volume 42, Issue 3 , 2016 , Pages 2429-2447 ; 09226168 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Moghaddasi Khiavi, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    A mechanochemical method was applied to prepare bismuth oxybromide (BiOBr) nanoplates using bismuth nitrate pentahydrate and potassium bromide for 15 (A15), 30 (A30) and 60 (A60) minutes. Scanning electron microscopy studies showed that all the products were comprised of nanoplates. Aggregated nanoplates along with microblocks were observed for A15 and A30 and the entire morphology was not homogenous. The morphology of A60 was uniform and consisted of thin and isolated nanoplates. Evaluation of the X-ray diffraction patterns showed that the purity and crystallinity of the products improved by increasing the milling time. The energy dispersive X-ray analysis confirmed the high purity of the... 

    Drug delivery systems and materials for wound healing applications

    , Article Advanced Drug Delivery Reviews ; Volume 127 , 2018 , Pages 138-166 ; 0169409X (ISSN) Saghazadeh, S ; Rinoldi, C ; Schot, M ; Saheb Kashaf, S ; Sharifi, F ; Jalilian, E ; Nuutila, K ; Giatsidis, G ; Mostafalu, P ; Derakhshandeh, H ; Yue, K ; Swieszkowski, W ; Memic, A ; Tamayol, A ; Khademhosseini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug... 

    Synthesis of micelles based on chitosan functionalized with gold nanorods as a light sensitive drug delivery vehicle

    , Article International Journal of Biological Macromolecules ; Volume 149 , 2020 , Pages 809-818 Pourjavadi, A ; Bagherifard, M ; Doroudian, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This study aims to design photo-triggered micelles by using a natural base polymer. Chitosan was functionalized with thiourea, and in the next step, it was modified by grafting poly(L-lactide), poly(N-isopropylacrylamide), and poly(acrylamide) in determined ratio to form thermo-sensitive micelles. The sulfur content of chitosan@thiourea was measured about 2%. Grafting of polymers on chitosan was characterized by FT-IR and NMR techniques. The critical micellar concentration was measured by using photo luminescence spectroscopy. The size and surface morphology experiments revealed that average size of micelles is about 14 nm, and the length and width of GNRs are about 65 and 19 nm,... 

    Utilizing graphene oxide/gold/methylene blue ternary nanocomposite as a visible light photocatalyst for a plasmon-enhanced singlet oxygen generation

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 135, Issue 5 , 2022 , Pages 2851-2865 ; 18785190 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this study, graphene oxide/gold/methylene blue (GO/Au/MB) ternary composites were synthesized and characterized through UV–vis, FTIR, XRD, XPS, SEM, and TEM analyses towards plasmon-enhanced singlet oxygen (1O2) generation. Through using gold nanoparticles and MB photosensitizers, the visible light adsorption capability of GO was enhanced by 115%. Moreover, applying this ternary composite as a photocatalyst under visible light interestingly revealed a drastic step-increase of 14% (i.e., from 9 to 23%) in the conversion of photooxygenation of Anthracene. This behavior was rationalized using finite-difference time-domain (FDTD) simulations which confirms the plasmonic field of gold... 

    Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy

    , Article Biomaterials ; Volume 232 , 2020 Rabiee, N ; Tavakkoli Yaraki, M ; Mokhtari Garakani, S ; Mokhtari Garakani, S ; Ahmadi, S ; Lajevardi, A ; Bagherzadeh, M ; Rabiee, M ; Tayebi, L ; Tahriri, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery...