Loading...
Search for: photovoltaic-modules
0.004 seconds

    An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches

    , Article Journal of Cleaner Production ; Volume 282 , 2021 ; 09596526 (ISSN) Salari, A ; Taheri, A ; Farzanehnia, A ; Passandideh fard, M ; Sardarabadi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    One of the most prominent hybrid solar devices is the photovoltaic thermal system (PVTS), which is able to provide simultaneous electricity and thermal energy. The thermal energy is the heat absorbed by the photovoltaic (PV) module and transferred to the attached thermal collector and finally to the heat transfer fluid. Utilizing a proper heat transfer fluid is an effective means to increase in obtained thermal and electrical powers and enhance PV thermal management. Over the past decade, employing nanofluids thanks to their superior thermophysical properties became a proved strategy to improve the efficiency of the PVTS. This paper covers cutting-edge researches on nanofluid-based PVTS via... 

    An experimental study of a solar hybrid system to produce freshwater from waste heat of photovoltaic module by using thermosyphon heat pipes

    , Article Energy Conversion and Management ; Volume 158 , 2018 , Pages 9-22 ; 01968904 (ISSN) Hooshmand, P ; Shafii, M. B ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    An experimental study was conducted on a solar hybrid system to transform the waste heat of photovoltaic module (PV module) into a useful heat which could be used in a solar desalination (SD) system in order to produce freshwater (scenario 1). Then, different parameters such as the amount of the produced freshwater by condensed vapor on the glass cover and basin side walls were taken into consideration after the fabrication of the SD system. Furthermore, the effect of water depth in the tray and the effect of the presence of a fan inside the basin (scenario 3) on water yield (kg/m2hr) were evaluated. In addition, the effects of using a mirror to lead the reflected light on the PV module and... 

    A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems

    , Article Renewable Energy ; Volume 135 , 2019 , Pages 437-449 ; 09601481 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Dust deposition on the surface of solar systems is one of the main parameters that significantly affects the performance of such systems. In this study, the effect of dust deposition density on the performance of photovoltaic modules (PV) and photovoltaic-thermal systems (PVT) is numerically investigated. Accordingly, all layers of a monocrystalline silicon PV module for both systems are simulated. Moreover, the effect of various system parameters on the performance of both clean and dusty PV module and PVT system are studied. The studied parameters included: solar radiation intensity, ambient temperature, coolant inlet temperature, and coolant inlet velocity. The obtained results indicate... 

    Optimal PV-FC hybrid system operation considering reliability

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 60, issue , September , 2014 , p. 325-333 Rajabi-Ghahnavieh, A ; Nowdeh, S. A ; Sharif University of Technology
    Abstract
    This paper presents an approach for optimal operation of a grid-connected hybrid system to maximize the system expected generated energy while maximizing the electricity sale revenue. The hybrid system consists of a photovoltaic (PV) module, an electrolyser (EL), hydrogen storage tank (HS) and a proton exchange membrane (PEM) fuel cell (FC). The generated energy is sold to the distribution grid. During the grid interruptions, the hybrid system output is used as an emergency supply to serve the local load, hence increasing the supply reliability. The proposed approach splits the whole problem in two sub problems: revenue maximizing problem (RMP) and expected generation maximizing problem... 

    Numerical simulation of PV cooling by using single turn pulsating heat pipe

    , Article International Journal of Heat and Mass Transfer ; Volume 127 , 2018 , Pages 203-208 ; 00179310 (ISSN) Alizadeh, H ; Ghasempour, R ; Shafii, M. B ; Ahmadi, M. H ; Yan, W. M ; Nazari, M. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Electrical efficiency of photovoltaic (PV) modules depends on their working temperature. Effective cooling is required in order to achieve higher performance. Pulsating heat pipes (PHPs) are compact heat transfer devices with high effective thermal performance due to the two-phase heat transfer mechanism. Since the lower temperature of PV modules leads to higher electricity generation and better efficiency, PHPs can be applied for PV cooling. In this work, the PV cooling by applying a single turn PHP is numerically investigated. In addition, a copper fin with the same dimensions as the PHP for cooling the PV panel is simulated to compare the performance of the PHP with a solid metal like... 

    An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches

    , Article Journal of Cleaner Production ; 2020 Salari, A ; Taheri, A ; Farzanehnia, A ; Passandideh fard, M ; Sardarabadi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    One of the most prominent hybrid solar devices is the photovoltaic thermal system (PVTS), which is able to provide simultaneous electricity and thermal energy. The thermal energy is the heat absorbed by the photovoltaic (PV) module and transferred to the attached thermal collector and finally to the heat transfer fluid. Utilizing a proper heat transfer fluid is an effective means to increase in obtained thermal and electrical powers and enhance PV thermal management. Over the past decade, employing nanofluids thanks to their superior thermophysical properties became a proved strategy to improve the efficiency of the PVTS. This paper covers cutting-edge researches on nanofluid-based PVTS via... 

    Directly coupled photovoltaic-electrolyzer system optimization using a novel ica methodology

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 6B, issue , 2014 Sayedin, F ; Maroufmashat, A ; Sattari, S ; Sharif University of Technology
    Abstract
    Hydrogen is considered to be the fuel of the future. It is a cleaner alternative to the fossil fuels we consume every day. Of all the different hydrogen production pathways that exist, producing the gas by utilizing the power generated by renewable energy sources has been a topic of interest for many researchers across the world. The following work focuses on minimizing the energy loss by optimizing the size and the operating conditions of an electrolyzer directly connected to a photovoltaic (PV) module at different irradiance. The hydrogen, in the proposed system, is produced using a proton exchange membrane (PEM) electrolyzer. A nonlinear method is considered, because of the complexity of... 

    A lifetime improved single phase grid connected photovoltaic inverter

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 234-238 ; 9781467301114 (ISBN) Mirzahosseini, R ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    In this paper, a reliable low power single phase grid-connected inverter for photovoltaic modules is proposed. The inverter has improved lifetime since large electrolytic capacitor is replaced with small film capacitor due to circuit topology, power processing and proper control scheme. Thus the main limiting component in single phase grid connected inverters is obviated. The proposed inverter consists of two power processing stages. First a dual active bridge (DAB) converter boosts the voltage of PV panel to approximately 440 V and eliminates impact of high dc bus voltage ripples. A proper feed forward control is proposed to regulate the dc bus voltage with high ripple. Simulation results... 

    Hydrogen generation optimization in a hybrid photovoltaic-electrolyzer using intelligent techniques

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2012 Collocated with the ASME 2012 6th International Conference on Energy Sustainability, San Diego, CA, USA, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 19-24 ; 9780791844823 (ISBN) Maroufmashat, A ; Seyyedyn, F ; Roshandel, R ; Bouroshaki, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    Abstract
    Hydrogen is a flexible energy carrier and storage medium and can be generated by electrolysis of water. In this research, hydrogen generation is maximized by optimizing the optimal sizing and operating condition of an electrolyzer directly connected to a PV module. The method presented here is based on Particle swarm optimization algorithm (PSO). The hydrogen, in this study, was produced using a proton exchange membrane (PEM) electrolyzer. The required power was supplied by a photovoltaic module rated at 80 watt. In order to optimize Hydrogen generation, the cell number of the electrolyser and its activity must be 9 and 3, respectively. As a result, it is possible to closely match the... 

    On the performance of inclined rooftop solar chimney integrated with photovoltaic module and phase change material: A numerical study

    , Article Solar Energy ; Volume 211 , 2020 , Pages 1159-1169 Salari, A ; Ashouri, M ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In an attempt to prolong the performance of the conventional Solar Chimney (SC) and enhance its efficiency, this contribution presents a kind of novel compound SC with the Photovoltaic (PV) module and Phase Change Material (PCM) called the SC-PV-PCM system. Using PCM not only improves the PV module performance but also extends the productive period of the SC. A three-dimensional quasi-steady computational fluid dynamics (CFD) model of the proposed system is developed. The developed model is used to investigate the effect of using PCMs with different melting points on the performance of the proposed system. It is demonstrated that the RT-50 provides superior performance among the studied... 

    Coefficient of performance of mono-and multi-crystalline silicon photovoltaic panels

    , Article Solar World Congress 2005: Bringing Water to the World, Including 34th ASES Annual Conference and 30th National Passive Solar Conference, Orlando, FL, 6 August 2005 through 12 August 2005 ; Volume 2 , 2005 , Pages 1045-1050 ; 9781622762637 (ISBN) Bahadori, M. N ; Zamzamian, K ; Sharif University of Technology
    2005
    Abstract
    The coefficient of performance (COP) of a photovoltaic panel or module is defined as the ratio of the total electrical energy produced by the panel during its life to the total energy spent for its manufacture. All processes involved for the manufacture of photovoltaic panels were considered and the energy spent per unit mass of the final product during each process was determined. The total electrical energy spent for the manufacture of a photovoltaic module of 1×0.5 m dimensions, employing 340 micron wafers, with the net wafer area of 0.36 m2, was then determined. Monocrystalline and multicrystalline silicon cells were employed. It was found that for the manufacture of the PV module...