Loading...
Search for: physical-characteristics
0.005 seconds
Total 23 records

    Design and optimization of a heat driven thermoacoustic refrigerator

    , Article Applied Thermal Engineering ; Volume 61, Issue 2 , 2013 , Pages 653-661 ; 13594311 (ISSN) Ghorbanian, K ; Karimi, M ; Sharif University of Technology
    2013
    Abstract
    The present paper deals with the design and optimization of a heat driven thermoacoustic refrigerator. A simplified model is developed which enables to pinpoint and examine the most important physical characteristics of a compact traveling wave thermoacoustic refrigerator driven by a traveling wave thermoacoustic engine. The model can explain the so-called traveling standing wave effect in thermoacoustics very well. The position, length and hydraulic radius of the refrigerator are optimized for the maximum total COP. The prime mover efficiency, refrigerator COP and dimensionless dissipation and their impacts on total COP are investigated and discussed. The results indicate that a COP of... 

    Online data loss in substation automation systems

    , Article IEEE Power and Energy Society General Meeting, 26 July 2015 through 30 July 2015 ; Volume 2015-September , 2015 ; 19449925 (ISSN) ; 9781467380409 (ISBN) Falahati, B ; Vakilian, M ; Fu, Y ; Sharif University of Technology
    IEEE Computer Society  2015
    Abstract
    The study presented in this paper investigated online data loss in a substation automation system (SAS) under network faults or failures. Online data loss refers to the amount of data that become inaccessible when a failure occurs in the SAS. It is a mathematical index related to the network's topology and architecture, and the calculation of which requires knowledge of the physical characteristics of SAS elements. The elements that record data were identified, and then the online data lost due to failures in those elements were determined. Also, as a case study, a typical SAS was examined under various states of failure, and the online data loss occurring under each scenarios was calculated... 

    Investigation of quantum conductance in semiconductor single-wall carbon nanotubes: Effect of strain and impurity

    , Article Journal of Applied Physics ; Volume 110, Issue 6 , 2011 ; 00218979 (ISSN) Rabiee Golgir, H ; Faez, R ; Pazoki, M ; Karamitaheri, H ; Sarvari, R ; Sharif University of Technology
    2011
    Abstract
    In this paper the effect of strain and impurity on the quantum conductance of semiconducting carbon nanotubes (CNTs) have been studied by ab-initio calculations. The effect of strain and impurity on the CNT conducting behavior and physical characteristics, like density of states (DOS), band structure, and atomic local density of state (LDOS), is considered and discussed separately and simultaneously. Our results show that the quantum conductance of semiconductor CNTs is increased by compression strain, elongation strain, and replacing nitrogen and boron doping in its structure. The amount of increasing in the conductance depends on the type of strain and impurity. Conductance of CNT can be... 

    Control of vibration amplitude, frequency and damping of an electrostatically actuated microbeam using capacitive, inductive and resistive elements

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 263-270 ; 9780791844472 (ISBN) Pasharavesh, A ; Alizadeh Vaghasloo, Y ; Fallah, A ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this study vibration amplitude, frequency and damping of a microbeam is controlled using a RLC block containing a capacitor, resistor and inductor in series with the microbeam. Applying this method all of the considerable characteristics of the oscillatory system can be determined and controlled with no change in the geometrical and physical characteristics of the microbeam. Euler-Bernoulli assumptions are made for the microbeam and the electrical current through the microbeam is computed by considering the microbeam deflection and its voltage. Considering the RLC block, the voltage difference between the microbeam and the substrate is calculated. Two coupled nonlinear partial... 

    Effects of depth variation of vegetation density on vertical mixing

    , Article Environmental Hydraulics - Proceedings of the 6th International Symposium on Environmental Hydraulics, 23 June 2010 through 25 June 2010 ; Volume 1 , June , 2010 , Pages 247-252 ; 9780415595452 (ISBN) Ghazvinizadeh, S ; Jamali, M ; Sharif University of Technology
    2010
    Abstract
    This paper discusses an experimental study of vertical mixing in an aquatic canopy. Vertical variation of physical characteristics of stems is fairly observed in the field and leads to variation in frontal area. This can affect both the flow and the mixing process.We experimentally investigated the effects of vertical density variation on both flow and vertical diffusion at high Reynolds numbers (turbulent flow range). Using rigid cylinders, we simulated step-like density variation in a flume. Vertical mixing coefficient was measured by recording vertical mixing of dye in the flume. The results indicate that vertical mixing coefficient decreases as density increases in depth. Velocity... 

    Reliability of Tehran transportation network during earthquakes

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1618-1626 ; 10263098 (ISSN) Shabani, K ; Nassiri, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Tehran is the capital of Iran and is one of the largest cities in the world. With its history of earthquakes, high population density, and a population of over 8.5 million, it must be prepared to cope with disaster. This article introduces a new method for estimating the reliability of a roadway network that considers the physical characteristics of the road and link capacity degradation. The proposed method was applied to a real road network and the connectivity reliability of the city was calculated. The proposed technique for computing connectivity reliability is sensitive to the characteristics of the road and adjacent buildings. The results indicate that northern Tehran, with a low... 

    Trunk motion system (TMS) using printed body worn sensor (BWS) via data fusion approach

    , Article Sensors (Switzerland) ; Volume 17, Issue 1 , 2017 ; 14248220 (ISSN) Mokhlespour Esfahani, M. I ; Zobeiri, O ; Moshiri, B ; Narimani, R ; Mehravar, M ; Rashedi, E ; Parnianpour, M ; Sharif University of Technology
    MDPI AG  2017
    Abstract
    Human movement analysis is an important part of biomechanics and rehabilitation, for which many measurement systems are introduced. Among these, wearable devices have substantial biomedical applications, primarily since they can be implemented both in indoor and outdoor applications. In this study, a Trunk Motion System (TMS) using printed Body‐Worn Sensors (BWS) is designed and developed. TMS can measure three‐dimensional (3D) trunk motions, is lightweight, and is a portable and non‐invasive system. After the recognition of sensor locations, twelve BWSs were printed on stretchable clothing with the purpose of measuring the 3D trunk movements. To integrate BWSs data, a neural network data... 

    Numerical simulation of soot formation in a JP combustor using different surrogate fuels

    , Article 2018 Joint Thermophysics and Heat Transfer Conference, 25 June 2018 through 29 June 2018 ; 2018 ; 9781624105524 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Saidi, M. H ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    As is known, jet propulsion fuels are rather complex with combustion resulting in a vast range of chemical compounds. So, their real modeling is rather hard and the application of final constructed models is restricted to a narrow band of real propulsion jet fuels. The main objective of this study is to extend suitable surrogate fuel models to reliably predict the combustion and soot characteristics of the equivalent jet propulsion fuel. In this regard, the combustion of proposed surrogate fuels is numerically studied in the above chosen combustion chamber. Of importance, the surrogate fuels should be proposed suitably to represent the correct physical characteristics and the real chemical... 

    Physical characteristics of heat-treated nano-silvers dispersed in sol-gel silica matrix

    , Article Nanotechnology ; Volume 17, Issue 3 , 2006 , Pages 763-771 ; 09574484 (ISSN) Babapour, A ; Akhavan, O ; Azimirad, R ; Moshfegh, A. Z ; Sharif University of Technology
    2006
    Abstract
    Silica films containing various concentrations of Ag nanoparticles were deposited on glass slides using a sol-gel process and then heat-treated in air at different temperatures. The films were analysed by using UV-visible spectrophotometry, atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) for their optical, surface morphological as well as structural, and chemical properties. After heat-treatment, the optical absorption peaks of Ag nanoparticles show a blueshift and an intensity reduction due to particle size reduction and AgOx nanoparticle formation, respectively. The particle size reduction... 

    Development of Regional Rainfall-Runoff Models

    , M.Sc. Thesis Sharif University of Technology Khatibi, Sahar (Author) ; Abrishamchi, Ahmad (Supervisor)
    Abstract
    Hydrological models are suitable tools for reduction of hydrological uncertainty in stream flow estimation. There are different historical approaches for the development of rainfall-runoff models, with regard to the choice of model structure and the calibration of the parameters, but the most attention has been focused on gauged catchments where sufficient data, in particular stream flow data, are available. So new modeling strategies for ungauged or pseudo ungauged catchments have been developed. This work was aimed to develop a methodology for the regionalization of some parameters of a conceptual rainfall-runoff model based on measurable physiographic, meteorological and even land... 

    An equivalent electrical circuit design for pipeline corrosion monitoring based on piezoelectric elements

    , Article Journal of Mechanical Science and Technology ; Volume 27, Issue 3 , March , 2013 , Pages 799-804 ; 1738494X (ISSN) Kolbadinejad, M ; Zabihollah, A ; Khayyat, A. A. A ; Pour, M. O. M ; Sharif University of Technology
    2013
    Abstract
    Underground pipelines are important infrastructure for transporting energy resources, particularly water and oil. Due to the high risk of damage and possible consequences, close monitoring of pipelines is a serious challenge for researchers and decision makers. Piezoelectric sensors/actuators are being used to monitor the physical characteristics of pipelines, including corrosion and crack. Piezoelectric ceramics as transmitters and/or receivers are connected to data concentrators in order to monitor the defects in pipelines. The performance and accuracy of this system highly depends on the accurate interpretation of the received electrical signals due to changing mechanical fields. However,... 

    Room temperature synthesis of highly crystalline TiO2 nanoparticles

    , Article Materials Letters ; Volume 92 , February , 2013 , Pages 287-290 ; 0167577X (ISSN) Sasani Ghamsari, M ; Radiman, S ; Azmi Abdul Hamid, M ; Mahshid, S ; Rahmani, S ; Sharif University of Technology
    2013
    Abstract
    Hydrolysis of titanium isopropoxide alcoholic solution has been used to prepare the crystallized TiO2 nanoparticles at low temperature. Concentration ratio was used to control the pathway of sol-gel process and change the physical characteristics of TiO2 nanopowders. The crystallinity, morphology and size of aged TiO2 nanopowders were studied by X-ray diffraction and Scanning Electron Microscopy (SEM). FTIR and, Thermo-Gravimetric (TG) analysis were used to identify the functional groups and thermal behavior of prepared samples. Experimental results have shown that high crystalline TiO2 nanomaterial with anatase polymorph can be obtained at room temperature. It has been found that the... 

    Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process

    , Article Tissue Engineering and Regenerative Medicine ; Volume 9, Issue 6 , 2012 , Pages 295-303 ; 17382696 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2012
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which displays splendid biocompatibility and bioactivity properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL) was employed as a matrix and hydroxyapatite nanorods were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in-situ sol-gel process using low cost chemicals. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD),... 

    Polyelectrolyte nanocomposite membranes using imidazole-functionalized nanosilica for fuel cell applications

    , Article Journal of Macromolecular Science, Part B: Physics ; Volume 54, Issue 1 , Nov , 2015 , Pages 17-31 ; 00222348 (ISSN) Tohidian, M ; Ghaffarian, S. R ; Nouri, M ; Jaafarnia, E ; Haghighi, A. H ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane, based on DuPont Nafion/imidazole-modified nanosilica (Im-Si), for direct methanol fuel cell applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of nanosilica, and negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of Nafion and Im-Si which result in both lower methanol permeability and also higher proton conductivity. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy, thermogravimetry analysis,... 

    Dynamic modeling of stick-slip motion in a legged, piezoelectric driven microrobot

    , Article International Journal of Advanced Robotic Systems ; Volume 7, Issue 3 , September , 2010 , Pages 201-208 ; 17298806 (ISSN) Kamali Eigoli, A ; Vossoughi, G. R ; Sharif University of Technology
    2010
    Abstract
    The motion of a stick-slip microrobot propelled by its piezoelectric unimorph legs is mathematically modeled. Using a continuously distributed mass model for the robot's body, the working equation of the mechanism is derived based on the assumption of linear Euler-Bernoulli beam theory and linear piezoelectric behavior. Moreover, the required condition for generating net motion is calculated in terms of physical characteristics of the microrobot. It is demonstrated that the higher the friction constant, then a lower average speed is obtained. Also, it is shown that a microrobot with heavier legs can move in a rougher environment. Regardless of the mass proportion between robot's main body... 

    A molecular-dynamics study of thermal and physical properties of platinum nanoclusters

    , Article Fluid Phase Equilibria ; Volume 280, Issue 1-2 , 2009 , Pages 16-21 ; 03783812 (ISSN) Akbarzadeh, H ; Parsafar, G. A ; Sharif University of Technology
    2009
    Abstract
    Metallic nanoclusters are interesting because of their utility in catalysis and sensors. The thermal and physical characteristics of metallic Pt nanoclusters with different sizes were investigated via molecular-dynamics simulations using Quantum Sutton-Chen (QSC) potential. This force field accurately predicts solid and liquid states properties as well as melting of the bulk platinum. Molecular dynamic simulations of Pt nanoclusters with 256, 456, 500, 864, 1372, 2048, 2916, 4000, 5324, 6912, 8788 atoms have been carried out at various temperatures. The Pt-Pt radial distribution function, internal energy, heat capacity, enthalpy, entropy of the nanoclusters were calculated at some... 

    A thermally-resilient all-optical network-on-chip

    , Article Microelectronics Reliability ; Volume 99 , 2019 , Pages 74-86 ; 00262714 (ISSN) Karimi, R ; Koohi, S ; Tinati, M ; Hessabi, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Optical networks-on-chip are introduced as an alternative for electrical interconnects in many-core systems, due to their low delay and power consumptions, as well as their high bandwidths. Despite these advantages, physical characteristics of the photonic components are highly sensitive to thermal variations, which results in optical data misrouting through the optical networks at the presence of temperature fluctuation. In this paper, we propose a thermally-resilient all-optical communication approach which improves reliability, as well as performance of the optical networks. For this purpose, we take advantages of auxiliary waveguides and a novel wavelength assignment approach to avoid... 

    Magnetic CoFe2O4 nanoparticles doped with metal ions: A review

    , Article Ceramics International ; Volume 46, Issue 11 , 2020 , Pages 18391-18412 Sharifianjazi, F ; Moradi, M ; Parvin, N ; Nemati, A ; Jafari Rad, A ; Sheysi, N ; Abouchenari, A ; Mohammadi, A ; Karbasi, S ; Ahmadi, Z ; Esmaeilkhanian, A ; Irani, M ; Pakseresht, A ; Sahmani, S ; Shahedi Asl, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Ceramic-magnetic nanoparticles (CMNPs) are attracting attention due to their various applications, especially in biomedical industries. Among them, spinel ferrite CMNPs have received considerable deliberations among different spinel metal oxides due to their fascinating characteristics. Spinel ferrite CMNPs are used for enhancement of the applicability of CMNPs without affecting the intrinsic advantages of iron oxide CMNPs. Spinel ferrites with doping agents have useful electrical and magnetic properties in various fields. Moreover, the replacement of metallic atoms in ferrites is promising to manipulate physical characteristics and improve their performance. Among different spinel ferrites,... 

    Spinel MgAl2O4 nanospheres coupled with modified graphitic carbon nitride nanosheets as an efficient Z-scheme photocatalyst for photodegradation of organic contaminants

    , Article Applied Surface Science ; Volume 585 , 2022 ; 01694332 (ISSN) Zehtab Salmasi, M ; Kazemeini, M ; Sadjadi, S ; Nematollahi, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this contribution, spinel MgAl2O4 nanospheres prepared by the combustion method were coupled with thermally-exfoliated g-C3N4 nanosheets (TE-GCN) through an efficient isoelectric point-assisted calcination technique. Physical characteristics of the synthesized nanocomposite were understudied utilizing the XRD, FT-IR, FE-SEM, TEM, BET-BJH, UV–Vis DRS, PL, and EIS analyses. This material was used as a novel nano-photocatalyst for degradation of reactive red 195 (RR195) industrial dye contaminant. Results revealed that, a successful synthesis of a heterojunction between the components of the nanocomposite was achieved. This exhibited an enormously improved electron-hole separation leading to... 

    Inhibitory effects of functionalized indium doped ZnO nanoparticles on algal growth for preservation of adobe mud and earthen-made artworks under humid conditions

    , Article International Biodeterioration and Biodegradation ; Volume 127 , Febraury , 2018 , Pages 209-216 ; 09648305 (ISSN) Shariati, M ; Mallakin, A ; Malekmohammady, F ; Khosravi Nejad, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this article, indium doped ZnO nanoparticles (alloy nanoparticles) were investigated as inhibitors against algae growth on adobe mud and earthen artworks for surface preservation from destruction caused by micro-organisms under humid conditions, through surface modification and activation run off. Nanoparticles (NPs) were fabricated by physical vapor deposition (PVD) growth mechanism. The fabricated NPs were approximately 20 nm in size. The Chlorella vulgaris and Scenedesmus quadricauda were tested by application of indium doped ZnO nanoparticles (In/ZnO NPs) as inhibitors. As concentrations of NPs increased, the negative impacts of NPs on the algal growth were enhanced and physical...