Loading...
Search for: physiological-parameters
0.006 seconds

    Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time

    , Article Proceedings - IEEE International Symposium on Circuits and Systems, 24 May 2015 through 27 May 2015 ; Volume 2015-July , 2015 , Pages 1006-1009 ; 02714310 (ISSN) ; 9781479983919 (ISBN) Kachuee, M ; Kiani, M.M ; Mohammadzade, H ; Shabany, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Recently a few methods have been proposed in the literature for non-invasive cuff-less estimation of systolic and diastolic blood pressures. One of the most prominent methods is to use the Pulse Transit Time (PTT). Although it is proven that PTT has a strong correlation with the systolic and diastolic blood pressures, this relation is highly dependent to each individuals physiological properties. Therefore, it requires per person calibration for accurate and reliable blood pressure estimation from PTT, which is a big drawback. To alleviate this issue, in this paper, a novel method is proposed for accurate and reliable estimation of blood pressure that is calibration-free. This goal is... 

    Cuffless blood pressure estimation algorithms for continuous health-care monitoring

    , Article IEEE Transactions on Biomedical Engineering ; Volume 64, Issue 4 , 2017 , Pages 859-869 ; 00189294 (ISSN) Kachuee, M ; Kiani, M. M ; Mohammadzade, H ; Shabany, M ; Sharif University of Technology
    IEEE Computer Society  2017
    Abstract
    Goal: Continuous blood pressure (BP) monitoring can provide invaluable information about individuals' health conditions. However, BP is conventionally measured using inconvenient cuff-based instruments, which prevents continuous BP monitoring. This paper presents an efficient algorithm, based on the pulse arrival time (PAT), for the continuous and cuffless estimation of the systolic BP, diastolic blood pressure (DBP), and mean arterial pressure (MAP) values. Methods: The proposed framework estimates the BP values through processing vital signals and extracting two types of features, which are based on either physiological parameters or whole-based representation of vital signals. Finally,...