Loading...
Search for: plasmon-resonance-absorption
0.007 seconds

    An optimal architecture of magneto-plasmonic core-shell nanoparticles for potential photothermal applications

    , Article Physical Chemistry Chemical Physics ; Volume 22, Issue 25 , 2020 , Pages 14318-14328 Hadilou, N ; Souri, S ; Navid, H. A ; Sadighi Bonabi, R ; Anvari, A ; Palpant, B ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    In this work, the optical responses of Fe3O4@Au and Fe3O4@Ag are comprehensively investigated using the discrete dipole approximation. It is found that the resonance wavelength and absorption efficiency strongly depend on the composition of the core and shell, geometry of the nanoparticles, core to particle volume ratio, core radius and shell thickness. The strongest impact is due to the shell material, the shape of the nanoparticles and their combination. When the composition of the shell is changed from gold to silver, instead of one fundamental resonance peak the absorption spectrum shows two, corresponding to the bonding plasmon mode at the nanoparticle-environment interface and... 

    Silver nanocube crystals on titanium nitride buffer layer

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 10 , 2009 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2009
    Abstract
    Thermally stable cubic silver nanoparticles were grown by simply annealing a silver nano-thickness layer on a crystalline TiN buffer layer deposited on a Si(1 0 0) substrate. Formation of silver nanocubes was investigated by scanning electron microscopy, atomic force microscopy, x-ray diffractometry and UV-visible spectroscopy. The shapes of the silver nanoparticles were controlled by the thickness of the Ag layer. The silver nanocubes were self-ordered single crystals bounded mainly by {1 0 0} facets. It was found that a change in the shape of the nanoparticles from semi-spherical to cubic resulted in a substantial variation of their surface plasmon resonance absorption peak from 410 to 590... 

    Storage of Ag nanoparticles in pore-arrays of SU-8 matrix for antibacterial applications

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 13 , 2009 ; 00223727 (ISSN) Akhavan, O ; Abdolahad, M ; Asadi, R ; Sharif University of Technology
    2009
    Abstract
    Silver nanoparticles (NPs) stored in pore-arrays (pa) SU-8 photoresist layer were utilized as an antibacterial nanocomposition against E. coli bacteria. The pa-SU-8 matrix was fabricated by an optical interference lithography method resulting in small pores with a diameter of ∼50 nm and a depth of ∼100 nm. The Ag NPs were deposited on the soft polymeric matrix at different drying temperatures of 50 and 90 °C. X-ray photoelectron spectroscopy showed that the deposited silver NPs were substantially in the metallic state, independent from the drying condition. However, the concentration of the immobilized Ag NPs on the film surface increased (by a factor of 2.5) at the higher drying... 

    Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol-gel

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 23 , November , 2008 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2008
    Abstract
    In this study, chemical durability of metallic copper nanoparticles dispersed in sol-gel silica thin films was investigated by exposing the films to air after a reduction process. At first, heat treatment in air for 1 h produced silica films containing crystalline cupric oxide nanoparticles agglomerated on the film surface. Subsequently, reduction of the oxidized films in a reducing environment of N2-H2 for another 1 h at temperatures of 400, 500 and 600 °C resulted in the formation of crystalline metallic Cu nanoparticles diffused in the silica matrix. The time evolution of the surface plasmon resonance absorption peak of the reduced Cu nanoparticles was studied after the reduction... 

    Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities

    , Article Surface and Coatings Technology ; Volume 204, Issue 21-22 , August , 2010 , Pages 3676-3683 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Antibacterial activity of sol-gel synthesized Ag-TiO2 nanocomposite layer (30nm) deposited on rough anatase (a) TiO2 thin film (~200nm in thickness) was investigated against Escherichia coli bacteria, in dark and also in exposure to UV light. The nanocomposite thin films were transparent with a surface plasmon resonance absorption band at a wavelength of 410nm. The metallic silver nanoparticles with an average diameter of 30nm and fcc crystalline structure were self-accumulated on surface of a mesoporous and aqueous TiO2 layer with a capillary pore structure having a pore radius of 3.0nm. By adding the silver nanoparticles in the TiO2 layer, recombination of the photoexcited electron-hole... 

    The effect of Au/Ag ratios on surface composition and optical properties of co-sputtered alloy nanoparticles in Au-Ag:SiO2 thin films

    , Article Journal of Alloys and Compounds ; Volume 486, Issue 1-2 , 2009 , Pages 22-28 ; 09258388 (ISSN) Sangpour, P ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Gold-silver alloy nanoparticles with various Au concentrations in sputtered SiO2 thin films were synthesized by using RF reactive magnetron co-sputtering and then heat-treated in reducing Ar + H2 atmosphere at different temperatures. The UV-visible absorption spectra of the bimetallic systems confirmed the formation of alloy nanoparticles. The optical absorption of the Au-Ag alloy nanoparticles exhibited only one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. The maximum absorption wavelength of the surface plasmon band showed a red shift with increasing... 

    Low temperature self-agglomeration of metallic Ag nanoparticles on silica sol-gel thin films

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 19 , 2008 ; 00223727 (ISSN) Akhavan, O ; Azimirad, R ; Moshfegh, A. Z ; Sharif University of Technology
    2008
    Abstract
    A facile sol-gel synthesis for self-agglomeration of metallic silver nanoparticles, with fcc crystalline structure, on the silica surface in a low annealing temperature has been introduced. X-ray photoelectron spectroscopy (XPS) revealed initial agglomeration (∼30 times greater than the nominal concentration of Ag) of the nanoparticles on the surface of the dried film (100 °C) and also their oxidation as well as easy diffusion (with 0.08 eV required activation energy) into the porous silica thin films, by increasing the annealing temperature (200-400 °C). By raising the Ag concentration from 0.2 to 1.6 mol% in the sol, the average size of the Ag nanoparticles increased from ∼5 to 37 nm...