Loading...
Search for: plasmonic-crystals
0.012 seconds

    Analyzing symmetry in photonic band structure of gyro-magnetic photonic crystals

    , Article Proceedings of SPIE - The International Society for Optical Engineering ; Volume 8096 , 2011 ; 0277786X (ISSN) ; 9780819487063 (ISBN) Najafi, A ; Khorasani, S ; Gholami, F ; Sharif University of Technology
    2011
    Abstract
    In the band structure analysis of photonic crystals it is normally assumed that the full photonic gaps could be found by scanning high-symmetry paths along the edges of Irreducible Brillouin Zones (IBZ). We have recently shown [1] that this assumption is wrong in general for sufficiently symmetry breaking geometries, so that the IBZ is exactly half of the complete BZ. That minimal required symmetry arises from the requirement on time-reversal symmetry. In this paper we show that even that requirement might be broken by using gyro-magnetic materials in the composition of photonic structures we can observe that the IBZ extends fully to the boundaries of the complete BZ, that is IBZ must be as... 

    Coupled plasmonic quantum bits

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 24 January 2010 through 28 January 2010 ; Volume 7608 , January , 2010 ; 0277786X (ISSN) ; 9780819480040 (ISBN) Eftekharian, A ; Sodagar, M ; Khoshnegar, M ; Khorasani, S ; Adibi, A ; Sharif University of Technology
    2010
    Abstract
    In this paper we introduce a coupled system of two quantum bits residing at the interface of a heterostructure device. The structure encompasses a reference quantum bit, a photonic/plasmonic crystal waveguide and an obedient quantum bit. Each quantum bit is an electronic device which is designed based on an anti-dot lattice of two-dimensional electron gas in heterostructures. By applying a potential gate in the aforementioned structure it is possible to control electronic tunneling rate and hence quantum bits' swapping frequency. Coupling through the plasmonic waveguide may be employed to entangle quantum bits. The waveguide has been designed by exploiting conducting islands of...