Loading...
Search for: plasmonic-nanostructures
0.007 seconds

    Fabrication of self-organized precisely tunable plasmonic SERS substrates via glancing angle deposition

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 214, Issue 9 , 2017 ; 18626300 (ISSN) Rezvani, E ; Ualibek, O ; Bulfin, B ; Sugurbekova, G ; Duesberg, G. S ; Shvets, I ; Sharif University of Technology
    Abstract
    Plasmonic nanostructures offer great enhancement of the Raman signal due to the strong confinement of the electromagnetic field. Thus, they are considered as suitable candidates for surface enhanced Raman spectroscopy (SERS). In this work, we present an alternative fabrication route, called the glancing angle deposition (GLAD), for tunable fabrication of plasmonic self-organized Ag nanoparticle arrays aimed at SERS. Using the GLAD technique, the inter-particle distance within the arrays can be made as small as 1 nm. Moreover, the plasmonic resonance can be precisely tuned over the whole visible range. The GLAD method can be up-scaled; and when a transparent substrate is used, it enables... 

    Circuit Model for Periodic Plasmonic Nanostructures Used as Light-rapping Back-structures in thin Film Solar Cells

    , M.Sc. Thesis Sharif University of Technology Yarmoghaddam, Elahe (Author) ; Mehrany, Khashayar (Supervisor) ; Khavasi, Amin (Co-Advisor)
    Abstract
    In recent years, thin-film photovoltaic cells with thicknesses of less than 1-2 µm have been developed with potentially lower production costs. Due to the small thickness of the absorbing semiconductor in these cells, the absorption is inevitably low at energies close to the electronic band gap of the semiconductor. This is particularly a problem for thin-film devices. Recently، periodic metallic nanostructures supporting surface plasmons have been introduced as alternative solutions to achieve light trapping in thin-film solar cells.Full numerical methods are usually used for the analysis of these periodic structures. The main drawback of these methods is that they are time-consuming and... 

    An analytical formulation enabling analysis of resonance eigenmodes and their interferences in scattering from plasmonic nanostructures, applications in engineering the radiation loss

    , Article IEEE Journal of Quantum Electronics ; Volume PP, Issue 99 , 2016 ; 00189197 (ISSN) Khajeahsani, M. S ; Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    An analytic formulation revealing exact contribution of different factors affecting the interference interaction between eigenmodes of a scatterer is presented by utilizing our previously reported modal scattering power formula. For special case of arbitrary multilayer concentric and nonconcentric nanoshells, a recursive method for analytically calculating the T-matrix, and each of these factors is derived. Results for a three layer structure showing the conditions for constructive and destructive interference interactions are discussed in details. It is shown that the interference interaction can occur in the vicinity of the overlapping resonance frequencies of the two spatially overlapping... 

    Optical nanoprobes for chiral discrimination

    , Article Analyst ; Volume 145, Issue 20 , 2020 , Pages 6416-6434 Bigdeli, A ; Ghasemi, F ; Fahimi Kashani, N ; Abbasi Moayed, S ; Orouji, A ; Jafar Nezhad Ivrigh, Z ; Shahdost Fard, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Chiral discrimination has always been a hot topic in chemical, food and pharmaceutical industries, especially when dealing with chiral drugs. Enantiomeric recognition not only leads to better understanding of the mechanism of molecular recognition in biological systems, but may further assist in developing useful molecular devices in biochemical and pharmaceutical studies. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of optical nanoprobes that are able to discriminate enantiomers of chiral analytes. This review explains how engineering nanoparticles (NPs) with desired physicochemical properties allows... 

    Investigation of a quasi-3D plasmonic nanostructure for TE and TM polarizations

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 11 , 2014 , p. 2838-2844 Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Abstract
    Quasi-3D plasmonic nanostructures consisting of a metallic film perforated as an array of nanoholes, separated by a gap from a nanodisk array, are theoretically investigated under plane wave illumination with transverse electric and transverse magnetic polarizations. The results are compared with the results of a simple nanodisk array. A full discussion involving the couplings between plasmon resonance in nanodisks, surface plasmon polaritons on the interfaces of metallic film, and different diffractive grating orders that contribute in the couplings will be presented. The large difference between the plasmon behavior of the nanodisk array alone and nanodisk array in the presence of nanohole... 

    Comprehensive three-dimensional split-field finitedifference time-domain method for analysis of periodic plasmonic nanostructures: Near- and far-field formulation

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 28, Issue 11 , 2011 , Pages 2690-2700 ; 07403224 (ISSN) Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Optical Society of American (OSA)  2011
    Abstract
    The three-dimensional split-field finite-difference time-domain (SF-FDTD) method is combined with the totalfield- scattered-field method for injecting a plane wave. A formulation is derived for calculating the incidence transformed fields of SF-FDTD on a one-dimensional auxiliary grid. The resulting fields obtained in the scattered zone are used to calculate the far fields, based on a proposed fully time-domain near-to-far-field transformation. The far-field information is used to calculate the extinction cross section of the periodic structure under oblique incidence. To analyze metallic periodic structures, a formulation with a reduced number of variables is proposed based on the auxiliary... 

    Single-channel high-transmission optical band-pass filter based on plasmonic nanocavities

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 37, Issue 8 , 1 August , 2020 , Pages 2329-2337 Najafabadi, M. M ; Vahidi, S ; Ghafoorifard, H ; Valizadeh, M ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    This paper is concerned with the investigation of an optical band-pass filter based on subwavelength surface plasmon polaritons. The transmission characteristics are numerically analyzed by the finite-difference time-domain method, and simulation results reveal that the structure has a band-pass filtering characteristic. The metal–insulator–metal plasmonic nanostructure is implemented by several vertical rectangular cavities across an optical waveguide. The metal and dielectric materials utilized for the realization of the filter are silver and air, respectively. Furthermore, the performance can be efficiently modified by tuning the geometric parameters such as the cavities’ length and width... 

    Computational electromagnetics in plasmonic nanostructures

    , Article Journal of Materials Chemistry C ; Volume 9, Issue 31 , 2021 , Pages 9791-9819 ; 20507534 (ISSN) Amirjani, A ; Sadrnezhaad, K ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Plasmonic nanostructures have emerging applications in solar cells, photodynamic therapies, surface-enhanced Raman scattering detection, and photocatalysis due to the excitation of localized surface plasmons. The exciting electric field resulting from the collective oscillation of free electrons is highly dependent on the dielectric medium, shape, size, composition, and configuration of plasmonic nanostructures. From an engineering perspective, one can tune the optimal properties in the desired applications of geometrical parameters such as the shape, size, and nanoparticles' configuration. Such optimization should be performed analytically (with exact solutions) or numerically (with... 

    Sunlight driven photoelectrochemical light-to-electricity conversion of screen-printed surface nanostructured TiO2 decorated with plasmonic Au nanoparticles

    , Article Electrochimica Acta ; Volume 219 , 2016 , Pages 386-393 ; 00134686 (ISSN) Siavash Moakhar, R ; Masudy Panah, S ; Jalali, M ; Liang Goh, G. K ; Dolati, A ; Ghorbani, M ; Riahi Noori, N ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, we report a promising sunlight-driven screen-printed TiO2 porous nanorods (PNR) photoanode decorated with Au plasmonic nanostructures for photoelectrochemical (PEC) light-to-electricity conversion. Fabricated photoanodes were characterized using field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, X-Ray diffraction analysis, X-ray photoelectron spectroscopy, N2 adsorption-desorption isotherms, UV–vis spectroscopy and electrochemical impedance spectroscopy in detail. The Au-PNR-TiO2 photoanode demonstrates superior PEC activities both under simulated sunlight and visible light irradiation. Interestingly,...