Loading...
Search for: plastic-products
0.005 seconds
Total 22 records

    Corotational analysis of elastic-plastic hardening materials based on different kinematic decompositions

    , Article ASME PVP2006/ICPVT-11 Conference, Vancouver, BC, 23 July 2006 through 27 July 2006 ; Volume 2006 , 2006 ; 0277027X (ISSN) ; 0791837823 (ISBN); 9780791837825 (ISBN) Ghavam, K ; Naghdabadi, R ; Sharif University of Technology
    2006
    Abstract
    In this paper, two corotational modeling for elastic-plastic, mixed hardening materials at finite deformations are introduced. In these models, the additive decomposition of the strain rate tensor as well as the multiplicative decomposition of the deformation gradient tensor is used. For this purpose, corotational constitutive equations are derived for elastic-plastic hardening materials with the non-linear Armstrong-Frederick kinematic hardening and isotropic hardening models. As an application of the proposed constitutive modeling, the governing equations are solved numerically for the simple shear problem with different corotational rates and the stress components are plotted versus the... 

    Arbitrary Lagrangian-Eulerian method in plasticity of pressure-sensitive material: Application to powder forming processes

    , Article Computational Mechanics ; Volume 42, Issue 1 , 2008 , Pages 13-38 ; 01787675 (ISSN) Khoei, A. R ; Anahid, M ; Shahim, K ; DorMohammadi, H ; Sharif University of Technology
    Springer Verlag  2008
    Abstract
    In this paper, an application of Arbitrary Lagrangian-Eulerian (ALE) method is presented in plasticity behavior of pressure-sensitive material, with special reference to large deformation analysis of powder compaction process. In ALE technique, the reference configuration is used for describing the motion, instead of material configuration in Lagrangian, and spatial configuration in Eulerian formulation. The convective term is used to reflect the relative motion between the mesh and the material. Each time-step is divided into the Lagrangian phase and Eulerian phase. The convection term is neglected in the material phase, which is identical to a time-step in a standard Lagrangian analysis.... 

    A new polypropylene/clay nanocomposite for replacement of engineering plastics in automotive application

    , Article Annual Technical Conference - ANTEC, Conference Proceedings ; Volume 1 , 2012 , Pages 102-109 ; 9781622760831 (ISBN) Zokaei, S ; Motamedi, P ; Bagheri, R ; Sharif University of Technology
    SPE  2012
    Abstract
    Polypropylene matrix nanocomposites reinforced with organoclay are investigated and their ability to replace some polyamide automotive parts is evaluated. This is so interesting from industrial point of view because of cost saving and ease of processing and recycling. This work is focused on different nanocomposite systems which are PP/nanoclay, and PP/PA/nanoclay. Also the effect of compatibilizer is presented here. Structure of these systems are studied by using WAXD, TEM and SEM. Mechanical properties of specimens are studied using uniaxial tensile test. As it will be demonstrated, nanoclay sheets tend to disperse in PA particles. On the other hand, introducing nanoclay into PP/PA blends... 

    Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites

    , Article Polymer Composites ; 2018 ; 02728397 (ISSN) Amraei, J ; Jam, J. E ; Arab, B ; Firouz-Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Carbon nanotubes are regarded as ideal fillers for polymeric materials due to their excellent mechanical properties. Mechanical analysis without consideration of nanotube–matrix interphase, may not give precise predictions. In this work, the impacts of interphase on the behavior of polymer-based nanocomposites are studied. For this purpose, a closed-form micromechanical interphase model considering the diameter of nanotube, the thickness of interphase, and mechanical properties of nanotube and polymer is proposed to estimate the overall mechanical properties of nanotube-reinforced polymer nanocomposites. Furthermore, the effective elastic constants of the nanocomposites for a wide range of... 

    Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites

    , Article Polymer Composites ; Volume 40, Issue S2 , 2019 , Pages E1219-E1234 ; 02728397 (ISSN) Amraei, J ; Jam, J. E ; Arab, B ; Firouz Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    Carbon nanotubes are regarded as ideal fillers for polymeric materials due to their excellent mechanical properties. Mechanical analysis without consideration of nanotube–matrix interphase, may not give precise predictions. In this work, the impacts of interphase on the behavior of polymer-based nanocomposites are studied. For this purpose, a closed-form micromechanical interphase model considering the diameter of nanotube, the thickness of interphase, and mechanical properties of nanotube and polymer is proposed to estimate the overall mechanical properties of nanotube-reinforced polymer nanocomposites. Furthermore, the effective elastic constants of the nanocomposites for a wide range of... 

    Simultaneously synthesis and encapsulation of metallic nanoparticles using linear-dendritic block copolymers of poly (ethylene glycol)-poly (citric acid)

    , Article Key Engineering Materials, 8 July 2010 through 9 July 2010 ; Volume 478 , July , 2011 , Pages 7-12 ; 10139826 (ISSN) ; 9783037851357 (ISBN) Naeini, A. T ; Vossoughi, M ; Adeli, M ; Sharif University of Technology
    2011
    Abstract
    Linear-dendritic triblock copolymers of linear poly(ethylene glycol) and hyperbranched poly(citric acid) (PCA-PEG-PCA) were used as the reducing and capping agents to encapsulate gold and silver nanoparticles (AuNPs and AgNPs). PCA-PEG-PCA copolymers in four different molecular weights were synthesized using 2, 5, 10 and 20 citric acid/PEG molar ratios and were called A 1, A 2, A 3 and A 4, respectively. Nanoparticles were encapsulated simultaneously during the preparation process. AuNPs were simply synthesized and encapsulated by addition a boiling aqueous solution of HAuCl 4 to aqueous solutions of A 1, A 2, A 3 and A 4. In the case of silver, an aqueous solution of AgNO 3 was reduced... 

    Synthesis of gold nanoparticle necklaces using linear-dendritic copolymers

    , Article European Polymer Journal ; Volume 46, Issue 2 , 2010 , Pages 165-170 ; 00143057 (ISSN) Tavakoli Naeini, A ; Adeli, M ; Vossoughi, M ; Sharif University of Technology
    2010
    Abstract
    Linear-dendritic copolymers containing hyperbranched poly(citric acid) and linear poly(ethylene glycol) blocks (PCA-PEG-PCA) were used as reducing and capping agents to synthesize and support gold nanoparticles (AuNPs). PCA-PEG-PCA copolymers with 1758, 1889 and 3446 molecular weights, called A1, A2 and A3 through this work, respectively, were synthesized using 2, 5, and 10 citric acid/PEG molar ratios. The diameter of A1, A2 and A3 in a fresh water solution was investigated using dynamic light scattering (DLS) and it was between 1.8 and 2.8 nm. AuNPs were simply synthesized and supported by addition a boiling aqueous solution of HAuCl4 to aqueous solutions of A1, A2 and A3. Supported AuNPs... 

    Determination of the extended Drucker-Prager parameters using the surrogate-based optimization method for polypropylene nanocomposites

    , Article Journal of Strain Analysis for Engineering Design ; Volume 51, Issue 3 , 2016 , Pages 220-232 ; 03093247 (ISSN) Payandehpeyman, J ; Majzoobi, G. H ; Bagheri, R ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    In this article, a new method is proposed to identify the constants of the extended Drucker-Prager yield surface for polypropylene nanocomposites. The method is based on optimizing the difference between the numerical and the experimental results of a three-point bending test. The test specimens are made of polypropylene/nanoclay and polypropylene/nano-calcium carbonate nanocomposites with different nanoparticles content. Moreover, the effect of composite filler content on the extended Drucker-Prager constants of polypropylene, as the composite matrix, is investigated. Inasmuch as numerical simulation is usually very time-consuming and highly nonlinear, a surrogate-based model with radial... 

    Influence of PP-g-MA on morphology, mechanical properties and deformation mechanism of copolypropylene/clay nanocomposite

    , Article Journal of Applied Polymer Science ; Volume 114, Issue 6 , 2009 , Pages 3751-3759 ; 00218995 (ISSN) Akbari, B ; Bagheri, R ; Sharif University of Technology
    Abstract
    Copolypropylene/organoclay nanocomposites are prepared by melt intercalation method in this research. Two different routes for addition of compatibilizer are examined, i.e. addition in the twin-screw extruder along with the polymer and the clay powder simultaneously and premixing the compatibilizer with the reinforcement in a batch mixer before addition to the polypropylene (PP) matrix. Morphology, tensile and impact properties and deformation mechanisms of the samples made via two procedures are studied and compared with those of the noncompatibilized system. To study the structure of nanocomposites, x-ray diffraction and transmission electron microscopy techniques are utilized. The... 

    Experimental and analytical study on channel shear connectors in fiber-reinforced concrete

    , Article Journal of Constructional Steel Research ; Volume 65, Issue 8-9 , 2009 , Pages 1787-1793 ; 0143974X (ISSN) Maleki, S ; Mahoutian, M ; Sharif University of Technology
    2009
    Abstract
    This paper investigates, experimentally and analytically, the capacity of channel shear connectors embedded in normal and polypropylene (PP) concrete. Limited testing is used to assess the accuracy of a proposed nonlinear finite element model for typical push-out test specimens. Using this model, an extensive parametric study is performed to arrive at a prediction for shear capacity of channel connectors in PP concrete. An equation, for inclusion in design codes, is suggested for the shear capacity of these connectors when used in PP concrete. © 2009 Elsevier Ltd. All rights reserved  

    Experimental study of the effect of water to cement ratio on mechanical and durability properties of Nano-silica concretes with Polypropylene fibers

    , Article Scientia Iranica ; Volume 26, Issue 5 A , 2019 , Pages 1-18 ; 10263098 (ISSN) Rahmani, K ; Ghaemian, M ; Hosseini, S. A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In the present paper, the effect of Nano silica on mechanical properties and durability of concrete containing polypropylene fibers has been investigated. Here, the length and length to diameter ratio of used polypropylene fibers were considered to be fixed and equal to 18 mm and 600 respectively and the cement content was 479 kg/m3. The effect of fibers and Nano silica in four different percentages for each one at 0.1, 0.2, 0.3 and 0.4 percent by volume for fibers and 3 percent for Nano silica in concrete with water to cement ratio of 0.33, 0.36, 0.4, 0.44 and 0.5 have been compared and evaluated. In total, more than 425 cubic and cylindrical specimens were made according to ASTM standards.... 

    Both tough and soft double network hydrogel nanocomposite based on o-carboxymethyl chitosan/poly(vinyl alcohol) and graphene oxide: a promising alternative for tissue engineering

    , Article Polymer Engineering and Science ; Volume 60, Issue 5 , 2020 , Pages 889-899 Pourjavadi, A ; Mazaheri Tehrani, Z ; Salami, H ; Seidi, F ; Motamedi, A ; Amanzadi, A ; Zayerzadeh, E ; Shabanian, M ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    A reinforced double network (DN) hydrogel as a candidate for skin scaffold was prepared. It consists of O-carboxymethyl chitosan, polyvinyl alcohol, honey, CaCl2, and graphene oxide. The various concentrations of CaCl2, namely, 30, 45, and 60 wt% were investigated. Besides, the GO content was studied as 3, 5, and 10 wt%. The structure of the DN was characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, energy dispersive X-ray and Brunauer-Emmett-Teller were evaluated. The mechanical properties were studied, too. It showed that the DN with 45 wt% CaCl2 was optimized. Also, swelling mechanism was investigated.... 

    Synthesis and characterization of a new thermosensitive chitosan-PEG diblock copolymer

    , Article Carbohydrate Polymers ; Volume 74, Issue 3 , 2008 , Pages 435-441 ; 01448617 (ISSN) Ganji, F ; Abdekhodaie, M. J ; Sharif University of Technology
    2008
    Abstract
    A novel thermosensitive hydrogel was synthesized by block copolymerization of monomethoxy poly(ethylene glycol) macromere (PEG) onto chitosan backbone, using potassium per sulfate as a free radical initiator. This block copolymer exhibits a thermoreversible transition from an injectable solution at low temperature to a gel at body temperature. Synthesized copolymers were characterized using FT-IR, 1H NMR, 13C NMR, and DSC techniques. Solubility test was performed to compare water and organo-solubility of chitosan before and after copolymerization. Sol-gel transition behavior was investigated using the vial inversion method and viscosity measurements. The gelation behavior makes the... 

    Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey

    , Article Structural Concrete ; 2021 ; 14644177 (ISSN) Khaloo, A ; Daneshyar, A ; Rezaei, B ; Fartash, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Fracture process of fiber-reinforced concrete notched beams is investigated here. Polypropylene macrosynthetic fibers are utilized for reinforcing concrete specimens, and a high-strength mix design is used to produce strong bonds between the embossed polypropylene fibers and the cementitious matrix of beams. Considering different locations for the notch, this study focuses on bridging mechanism under different conditions using both experimental and numerical approaches. First mode of fracture occurs due to opening of crack faces. This mode of failure is simulated by imposing symmetric boundary conditions on middle-notched beams. Inducing the notch with an offset from the middle, mixed-mode... 

    Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey

    , Article Structural Concrete ; Volume 23, Issue 1 , 2022 , Pages 457-472 ; 14644177 (ISSN) Khaloo, A ; Daneshyar, A ; Rezaei, B ; Fartash, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Fracture process of fiber-reinforced concrete notched beams is investigated here. Polypropylene macrosynthetic fibers are utilized for reinforcing concrete specimens, and a high-strength mix design is used to produce strong bonds between the embossed polypropylene fibers and the cementitious matrix of beams. Considering different locations for the notch, this study focuses on bridging mechanism under different conditions using both experimental and numerical approaches. First mode of fracture occurs due to opening of crack faces. This mode of failure is simulated by imposing symmetric boundary conditions on middle-notched beams. Inducing the notch with an offset from the middle, mixed-mode... 

    Comparison of rheological behavior of branched polypropylene prepared by chemical modification and electron beam irradiation under air and N2

    , Article Radiation Physics and Chemistry ; Volume 79, Issue 10 , 2010 , Pages 1088-1094 ; 0969806X (ISSN) Mousavi, S. A ; Dadbin, S ; Frounchi, M ; Venerus, D. C ; Medina, T. G ; Sharif University of Technology
    2010
    Abstract
    Chemical and electron beam irradiation methods were used to introduce a branched structure into polypropylene and propylene-ethylene copolymer. The chemical method was carried out in an internal mixer using initiator and TMPTMA monomer. In irradiation method, the polymer was irradiated by electron beam under air and nitrogen atmosphere. The branched structure in the modified polymer was confirmed by rheological measurements. While degradation was significant in chemical method, branching occurred efficiently by irradiation under air. Small amount of ethylene in the propylene copolymer promoted branching over degradation  

    Chitosan-g-PLGA copolymer as a thermosensitive membrane

    , Article Carbohydrate Polymers ; Volume 80, Issue 3 , 2010 , Pages 740-746 ; 01448617 (ISSN) Ganji, F ; Abdekhodaie, M. J ; Sharif University of Technology
    2010
    Abstract
    A thermosensitive copolymer was synthesized by graft copolymerization of poly(lactide-co-glycolide) (PLGA) copolymers onto the surface of chitosan membranes. Acryloyl chloride was used as a coupling reagent for the covalent attachment of PLGA to the chitosan membranes. FTIR spectroscopy and DSC analysis were used to characterize the resulting graft copolymer. Thermosensitive swelling behaviors of the copolymer were investigated as well. The membranes exhibited reversible swelling-shrinking behavior; higher swelling ratios were obtained observed at higher temperatures. Drug permeation studies were carried out using vancomycin hydrochloride and betamethasone sodium phosphate as the model... 

    The genetic algorithm approach for shape optimization of powder compaction processes considering contact friction and cap plasticity models

    , Article Engineering Computations (Swansea, Wales) ; Volume 27, Issue 3 , 2010 , Pages 322-353 ; 02644401 (ISSN) Khoei, A. R ; Keshavarz, Sh ; Khaloo, A. R ; Sharif University of Technology
    Abstract
    Purpose - The purpose of this paper is to present a shape optimization technique for powder forming processes based on the genetic algorithm approach. The genetic algorithm is employed to optimize the geometry of component based on a fixed-length vector of design variables representing the changes in nodal coordinates. The technique is used to obtain the desired optimal compacted component by changing the boundaries of component and verifying the prescribed constraints. Design/methodology/approach - The numerical modeling of powder compaction simulation is applied based on a large deformation formulation, powder plasticity behavior, and frictional contact algorithm. A Lagrangian finite... 

    Effect of plasma electrolytic oxidation on joining of AA 5052 aluminium alloy to polypropylene using friction stir spot welding

    , Article Surface and Coatings Technology ; Volume 313 , 2017 , Pages 274-281 ; 02578972 (ISSN) Aliasghari, S ; Ghorbani, M ; Skeldon, P ; Karami, H ; Movahedi, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The effect of a plasma electrolytic oxidation (PEO) pre-treatment on joining of AA 5052 aluminium alloy and polypropylene by friction stir spot welding (FSSW) is investigated using lap tensile shear tests. Two surface conditions of the AA 5052 alloy are compared, one with a PEO pre-treatment in a silicate-based electrolyte, another without any pre-treatment. The resultant specimens are examined by high resolution scanning electron microscopy, thermogravimetric analysis and attenuated total reflectance-infrared spectroscopy. The PEO treatment generated a thermally-insulating, porous ceramic coating, which has a highly porous, rough surface that is favourable for incorporating polypropylene... 

    Improvement of performance of polyamide reverse osmosis membranes using dielectric barrier discharge plasma treatment as a novel surface modification method

    , Article Polymer Engineering and Science ; Volume 59 , 2019 , Pages E468-E475 ; 00323888 (ISSN) Jahangiri, F ; Asadollahi, M ; Mousavi, S. A ; Farhadi, F ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    In this research, surface modification of aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes was carried out using dielectric barrier discharge (DBD) plasma treatment to improve the performance and fouling resistance of prepared RO membranes. First, polyamide TFC RO membranes were synthesized via interfacial polymerization of m-phenylenediamine and trimesoyl chloride monomers over microporous polysulfone support membrane. Next, the DBD plasma treatment with 15 s, 30 s, 60 s, and 90 s duration was used for surface modification. The surface properties of RO membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR),...