Loading...
Search for: plate-heat-exchangers
0.007 seconds

    Numerical investigations of heat transfer and pressure drop of condensation in streamwise-periodic herringbone-type plate channels

    , Article International Journal of Heat Exchangers ; Volume 7, Issue 1 , 2006 , Pages 163-180 ; 15245608 (ISSN) Akbari, M ; Farhanieh, B ; Sharif University of Technology
    2006
    Abstract
    Turbulent fully developed periodic condensation heat transfer and pressure drop in herringbone-type plate heat exchangers for R134a and steam were numerically investigated. A mixture model was introduced and the equations governing the two phase flow were simplified. Thus a single phase periodic flow with mixture properties was solved for R134a. For Steam a separate empirical model was used. The governing equations were solved numerically by a finite-volume method for elliptic flows in complex geometries using collocated variable arrangement. The influence of mass flux and vapor quality on frictional pressure drop for refrigerant was investigated. The heat transfer was studied using a... 

    Numerical investigation of the inlet baffle, header geometry, and triangular fins effects on plate-fin heat exchangers performance

    , Article Heat Transfer Engineering ; Volume 36, Issue 16 , 2015 , Pages 1397-1408 ; 01457632 (ISSN) Salehi, S ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    In this study, the optimal location of baffle in the header of air-to-air plate heat exchangers and the geometry of the header and the effects of triangular fins arrays on the effectiveness were numerically investigated for different flow rates and Reynolds numbers on different models. The main purpose of inlet baffle and geometry changes is to improve the pattern of flow distribution and assist flow uniformity. The investigations show that the optimal location of the inlet baffle with high Reynolds numbers has an insignificant effect on effectiveness, while with Reynolds numbers 250-3000, the effectiveness is affected significantly by baffle location. On the other hand, the reduction in... 

    Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow

    , Article Experimental Thermal and Fluid Science ; Volume 35, Issue 3 , April , 2011 , Pages 495-502 ; 08941777 (ISSN) Zamzamian, A ; Oskouie, S. N ; Doosthoseini, A ; Joneidi, A ; Pazouki, M ; Sharif University of Technology
    2011
    Abstract
    Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical... 

    Water-energy nexus approach for optimal design of hybrid cooling system in direct reduction of iron plant

    , Article Journal of Cleaner Production ; Volume 287 , 2021 ; 09596526 (ISSN) Hashemi Beni, M ; Morad Bazofti, M ; Akbari Mohammadi, A ; Mokhtari, H ; Saboohi, Y ; Golkar, B ; Ghandi, A. H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Direct reduction of iron process in steel industry has special production conditions. Low quality cooling water, low cold and high hot cooling water temperature, space limitation for new equipment installation, high value-added of product and severe effect of cooling water temperature on production rate are of these conditions. Considering technical and economic constraints and limitations, this situation makes this process an attractive case study for converting the existing wet cooling tower to hybrid cooling system. In this paper, based on integration of process, dry and wet cooling system and ambient conditions profiles, a new method for designing hybrid cooling system has been proposed....