Loading...
Search for: pluronic
0.009 seconds

    Synthesis and Characterization of ATPEG-PMDA Hydrogels Conjugated with Thermo-Responsive Coated Magnetic Nanoparticles for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Abdorahim, Marjan (Author) ; Simchi, Abdoreza (Supervisor)
    Abstract
    A novel thermo responsive decorated system is designed by coating Fe3O4 magnetic nanoparticles with conjugated Pluronic-ATPEG copolymer incorporated into the PEG-PMDA Hydrogel for drug delivery to the cartilage tissue. Grafted copolymer was synthesized by reaction between carboxylated Pluronic and amino terminated Poly ethylene glycol (ATPEG) and confirmed by FTIR and NMR analysis. The magnetic nanoparticles were modified with the produced copolymer and characterized by TEM, HRTEM, XRD, DLS, and VSM. A typical product has 13 nm magnetic core and 105 nm hydrodynamic diameter with narrow size distribution. DLS results showed that there was an increase in size by increasing temperature from 25℃... 

    Surface Modification of Bacterial Cellulose-Reinforced Keratin Nanofibers using Pluronic/Gum Tragacanth Hydrogel Nanoparticles Produced by Concurrent gel Electrospray/Polymer Electrospinning Method

    , M.Sc. Thesis Sharif University of Technology Azarniya, Amir (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor)
    Abstract
    In this work, wool keratin/polyethylene oxide (PEO) nanofibrous scaffolds were fabricated by electrospinning method. Bacterial cellulose nanofibrils (BCNFs) were embedded in the electrospun keratin/PEO nanofibers. Incorporation of BCNFs into the nanofibers enhances their hydrophilicity, mechanical properties and cell viability, adhesion and proliferation. Water contact angle of the nanofibers decreased from 126˚ to 83˚by addition of 1 wt % BCNFs. A thermogelling hydrogel based on carboxylated pluronic (Pl-COOH) and gum tragacanth (GT) was fabricated and polymer conjugation was confirmed by FTIR and H-NMR spectroscopy. Morphological and viscoelastic properties of GT-grafted Pl-COOH hydrogels... 

    Synthesis of Nano Ceramic Powders for Drug Delivery and It’s Release

    , M.Sc. Thesis Sharif University of Technology Shahriari, Rezvan (Author) ; Nemati, Ali (Supervisor) ; Dobakhti, Faramarz (Supervisor)
    Abstract
    In this project, Fe3O4 nanoparticles were synthesized and coated with different polymeric materials for drug delivery application. For this purpose, water dispersible oleic acid(OA)- pluronic block copolymer coated magnetite iron oxide nanoparticles were synthesized that can be loaded with proper doses of cephalexin. Our data indicated that formulation of iron oxide nanoparticles was developed by optimizing the amount of oleic acid required to coat iron oxide nanoparticles and then by optimizing the amount of pluronic required to form an aqueous dispersion of oleic acid coated nanoparticles. Synthesis of magnetite nanoparticles was done by the addition of a strong base (NH4OH) to ferrous... 

    RSM based engineering of the critical gelation temperature in magneto-thermally responsive nanocarriers

    , Article European Polymer Journal ; Volume 120 , 2019 ; 00143057 (ISSN) Khodaei, A ; Bagheri, R ; Madaah Hosseini, H. R ; Bagherzadeh, E ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The multistep release of therapeutic agents in the theranostic particulate systems has remained as a challenge in smart drug delivery. In this study, superparamagnetic nanoparticles of Fe3O4 were coated with a blend of F127/F68 grades of pluronic in order to adjust the lower critical solution temperature (LCST) and consequently engineering of the release temperature. Pluronic as a biocompatible thermo-sensitive polymer is frequently used as a self-emulsifying drug delivery system. Magnetite nanoparticles with double layer coating of oleic acid and pluronic F127 have been reported as an on-demand smart carrier for hydrophobic drugs. LCST was examined using differential scanning calorimetry... 

    Synthesis of Magnetic Nanocomposite Scaffolds by Electrospinning Method and Study of Drug Release Behavior

    , Ph.D. Dissertation Sharif University of Technology Khodaei, Azin (Author) ; Bagheri, Reza (Supervisor) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Controlled release is a crucial factor in tissue engineering and cancer-therapy applications. The main purpose of current research is to synthesis smart magnetic nanocarriers for hydrophobic drug and embedding them in a fibrous platform for anti-cancer/ tissue engineering applications. In this regard, three different drug delivery systems of magnetic nanocolloid, magnetic fibers and hydrogels were studied. In the first phase, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized and then were modified using oleic acid and thermo-sensitive polymer of pluronic F127/F68. After characterization of this composite, Response Surface Methodology (RSM) was applied to model the lower... 

    Design of Scaffolds with Multi-scale Engineered Microchannels

    , M.Sc. Thesis Sharif University of Technology Mollajavadi, Mohammad Yasin (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Building complex and functional tissues and organs is very challenging. One of the challenges is building an efficient network of blood vessels that can be used to facilitate the transport of nutrients and oxygen to the host. In addition to using channels for oxygen supply, another solution is to use oxygen-carrying materials. In this study, in addition to designing and simulating scaffolds with multi-scale microchannels, calcium peroxide was used to release oxygen and eliminate hypoxia in the scaffold. Here alginate is used as the main material for scaffolding. In an attempt to build a scaffold using a bio-printer, pluronic acid was also used as a sacrificial material to create canals.... 

    Dual-sensitive hydrogel nanoparticles based on conjugated thermoresponsive copolymers and protein filaments for triggerable drug delivery

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 23 , 17 May , 2018 , Pages 19336-19346 ; 19448244 (ISSN) Ghaffari, R ; Eslahi, N ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this study, novel hydrogel nanoparticles with dual triggerable release properties based on fibrous structural proteins (keratin) and thermoresponsive copolymers (Pluronic) are introduced. Nanoparticles were used for curcumin delivery as effective and safe anticancer agents, the hydrophobicity of which has limited their clinical applications. A drug was loaded into hydrogel nanoparticles by a single-step nanoprecipitation method. The drug-loaded nanoparticles had an average diameter of 165 and 66 nm at 25 and 37 °C, respectively. It was shown that the drug loading efficiency could be enhanced through crosslinking of the disulfide bonds in keratin. Crosslinking provided a targeted release...