Loading...
Search for: pmma
0.008 seconds

    Experimental and thermomechanical analysis of the effect of tool pin profile on the friction stir welding of poly(methyl methacrylate) sheets

    , Article Journal of Manufacturing Processes ; Volume 34 , 2018 , Pages 412-423 ; 15266125 (ISSN) Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Effects of frustum, cubic and triangle tool pin profiles on the friction stir welding (FSW) of poly(methyl methacrylate) (PMMA) were studied by experimental analysis and thermomechanical simulations. It is shown that employing pins with a low contact surface area form macrocracks and voids along the joint line. Edged-type pins locally stir the polymer and cause tunnel defects which are formed at the root of the joint. In contrast, pins with relatively smooth and large surface area would yield a defect-free weldment if an appropriate processing condition is employed. Mechanical examinations in longitudinal (LS) and transverse (TS) directions indicate that the highest tensile strength (LS = 59... 

    A novel revolving piston minipump

    , Article Sensors and Actuators, B: Chemical ; Volume 218 , October , 2015 , Pages 237-244 ; 09254005 (ISSN) Ashouri, M ; Shafii, M. B ; Moosavi, A ; Amiri Hezave, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, a novel prototype high-efficiency miniature pump that uses magnetic properties of a ferrofluid in both pumping and valving mechanisms is presented. The minichannel consisting of a cylindrical pumping chamber, a check valve, an inlet and an outlet, comprises six bonded layers of PMMA. A cylindrical permanent magnet that is placed inside the chamber and is externally actuated by a motorized off-center permanent magnet, functions as a revolving piston which sweeps the perimeter of the cylinder. Ferrofluid is used to cover the gaps between the magnetic piston and the channel walls, also serves as a separating plug between the inlet and the outlet of the chamber preventing... 

    Diffuser miniature pump with an extra ferrofluidic valve

    , Article Microfluidics and Nanofluidics ; Volume 19, Issue 5 , November , 2015 , Pages 1235-1244 ; 16134982 (ISSN) Ashouri, M ; Shafii, M. B ; Moosavi, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    This paper presents the prototype design and fabrication of a magnetically actuated miniature pump that utilizes self-sealing capability of ferrofluid-covered permanent magnets in both pumping and valving mechanisms. The valving action is performed by employing one active valve along with two nozzle/diffuser elements. Two cylindrical permanent magnets are placed inside the flat-wall channels: One magnet acts as the active valve and the other one serves as a reciprocating piston actuating the working fluid. In order to seal the gaps between the channel walls and the permanent magnet of the valve/piston, ferrofluid is used to cover the surfaces of both magnets. The valve and the piston are... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; 2015 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Mehrabadi, J. F ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; Volume 22, Issue 10 , 2016 , Pages 2447-2454 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Fallah Mehrabadi, J ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    Design and fabrication of sensitive carbon nanotubes/PMMA film for acetone vapour detection

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 268-277 ; 17469392 (ISSN) Ghasempour, R ; Iraji Zad, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    2010
    Abstract
    We present gas sensing property of carbon nanotubes (CNTs) polymethylmethacrylate (PMMA) composite as the active element for acetone vapour detection at room temperature. The polymeric films were formed by spin coating method on SiO2 substrates. Then they were activated by dropping the CNTs suspension in acetone on the PMMA films. The CNT/PMMA films were characterised by SEM, TEM and Raman spectroscopy. Variation of film's electrical resistance after exposure polar and non-polar gases is utilised as the principle of gas sensing. The experimental results showed that the samples present chemical selectivity and reversibility toward polar gases especially acetone vapour  

    Theoretical and experimental studies of a magnetically actuated valveless micropump

    , Article Journal of Micromechanics and Microengineering ; Volume 27, Issue 1 , 2017 ; 09601317 (ISSN) Ashouri, M ; Shafii, M. B ; Moosavi, A ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 μl min-1 while... 

    A novel reciprocating micropump based on Lorentz force

    , Article Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 7 February 2015 through 9 February 2015 ; Volume 9320 , 2015 ; 16057422 (ISSN) ; 9781628414103 (ISBN) Salari, A ; Hakimsima, A ; Shafii, M. B ; Sharif University of Technology
    SPIE  2015
    Abstract
    Lorentz force is the pumping basis of many electromagnetic micropumps used in lab-on-a-chip. In this paper a novel reciprocating single-chamber micropump is proposed, in which the actuation technique is based on Lorentz force acting on an array of microwires attached on a membrane surface. An alternating current is applied through the microwires in the presence of a magnetic field. The resultant force causes the membrane to oscillate and pushes the fluid to flow through microchannel using a ball-valve. The pump chamber (3 mm depth) was fabricated on a Polymethylmethacrylate (PMMA) substrate using laser engraving technique. The chamber was covered by a 60 μm thick hyper-elastic latex rubber... 

    Experimental and thermomechanical analysis of friction stir welding of poly(methyl methacrylate) sheets

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 3 , 2018 , Pages 209-218 ; 13621718 (ISSN) Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In the present work, the feasibility of friction stir welding (FSW) of poly(methyl methacrylate) sheets was studied experimentally and theoretically by employing thermomechanical simulations. The effect of processing parameters including tool plunge depth, tilt angle, tool rotational speed (w), and transverse velocity (v) was investigated to determine suitable conditions to attain sound and defect-free joints. It is shown that a low tool plunge depth of 0.2 mm and a tilt angle of 2° provide suitable material flow to gain sound joints. By controlling the heat input into stir zone by increasing the tool rotational speed and decreasing linear velocity, the formation of defects can be minimised.... 

    Dielectric and piezoelectric properties of porous PZT-PCN ceramics sintered at different temperatures

    , Article Materials Letters ; Volume 151 , July , 2015 , Pages 85-88 ; 0167577X (ISSN) Abdullah, F. F ; Nemati, A ; Bagheri, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract Porous lead zirconate titanate-lead cobalt niobate 0.8Pb(Zr1/2Ti1/2)O3-0.2Pb(Co1/3Nb2/3)O3 (PZT-PCN) piezoelectric ceramics were fabricated by introducing pore-forming agent polymethyl methacrylate (PMMA), and the effect of sintering behavior on their microstructure, dielectric, and piezoelectric properties were investigated. The optimum sintering procedure was designed according to the thermogravimetric analysis of pore former. Finally the electrical properties were measured. The porosity of PZT-PCN ceramics decreased and the grain size increased with an increase in the sintering temperature at a fixed PMMA addition. "An increase in density with sintering temperature from 1050 to... 

    Plasma based surface modication of poly (dimethylsiloxane) electrospun membrane proper for organ-on-a-chip applications

    , Article Scientia Iranica ; Volume 26, Issue 2 , 2019 , Pages 808-814 ; 10263098 (ISSN) Kiyoumarsioskouei, A ; Saidi, M. S ; Moghadas, H ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Electrospun porous membrane; Superhydrophilic surfaces; Superhydrophobic surfaces; Cell culture; Organ on a chip; Flexible membrane; Strong membrane; Surface modications  

    Plasma based surface modication of poly (dimethylsiloxane) electrospun membrane proper for organ-on-a-chip applications

    , Article Scientia Iranica ; Volume 26, Issue 2 , 2019 , Pages 808-814 ; 10263098 (ISSN) Kiyoumarsioskouei, A ; Saidi, M. S ; Moghadas, H ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    onstructing of the scaffolds for cell culture applications has long been of interest for engineering researchers and biologist. In this study, a novel process is utilized for construction of suitable membrane with a high mechanical strength and appropriate surface behavior. Poly (dimethylsiloxane) (PDMS) is electrospun into fine fibers using poly (methyl methacrylate) (PMMA) as the carrier polymer in different weight ratios. Since the surface behavior of all PDMS substrates is moderately hydrophobic (120 < contact angle (CA) < 150), the electrospun membranes with higher PDMS ratios show slightly higher hydrophilicity. Direct plasma treatment is utilized to change the interfacial wettability... 

    Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology

    , Article Polymer Testing ; Volume 90 , 2020 Derazkola, H. A ; Khodabakhshi, F ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Laminated polymer-steel composites are promising layered materials for practical applications in the automotive industry considering their superior crush resistance capacity in terms of enhanced damping potential. In this research, the sheet lamination (SL) route of friction stir additive manufacturing (FTAM) technology was implemented for the production of a poly-methyl-methacrylate (PMMA) polymer matrix composite structure as reinforced by textile stainless steel layers, and feeding of PMMA granulates inside the stirred region. Layers bonding and the soundness of composite formation during fabrication of the laminated structure were studied. Possible chemical interactions between the steel... 

    Encapsulation strategies for highly stable perovskite solar cells under severe stress testing: damp heat, freezing, and outdoor illumination conditions

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 38 , 2021 , Pages 45455-45464 ; 19448244 (ISSN) Mohammadi, M ; Gholipour, S ; Malekshahi Byranvand, M ; Abdi, Y ; Taghavinia, N ; Saliba, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    A key direction toward managing extrinsic instabilities in perovskite solar cells (PSCs) is encapsulation. Thus, a suitable sealing layer is required for an efficient device encapsulation, preventing moisture and oxygen ingression into the perovskite layer. In this work, a solution-based, low-cost, and commercially available bilayer structure of poly(methyl methacrylate)/styrene-butadiene (PMMA/SB) is investigated for PSCs encapsulation. Encapsulated devices retained 80% of the initial power conversion efficiency (PCE) at 85 °C temperature and 85% relative humidity after 100 h, while reference devices without SB (only PMMA) suffer from rapid and intense degradation after only 2 h, under the... 

    Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly (methyl methacrylate)-based nanocomposites prepared by friction stir processing

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 79 , March , 2018 , Pages 246-253 ; 17516161 (ISSN) Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, alumina-reinforced poly(methyl methacrylate) nanocomposites (PMMA/Al2O3) containing up to 20 vol% nanoparticles with an average diameter of 50 nm were prepared by friction stir processing. The effects of nanoparticle volume fraction on the microstructural features and mechanical properties of PMMA were studied. It is shown that by using a frustum pin tool and employing an appropriate processing condition, i.e. a rotational speed of 1600 rpm/min and transverse velocity of 120 mm/min, defect free nanocomposites at microscale with fine distribution of the nanoparticles can successfully been prepared. Mechanical evaluations including tensile, flexural, hardness and impact tests... 

    Friction-stir lap-joining of aluminium-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 1 , 2018 , Pages 35-49 ; 13621718 (ISSN) Aghajani Derazkola, H ; Khodabakhshi, F ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this research, the feasibility of friction-stir welding (FSW) for dissimilar lap-joining of an aluminium-magnesium alloy (AA5058) and poly-methyl-methacrylate sheets to attain sound and defect-free joints was examined. The inter-mixing flow patterns between the metal and polymer counterparts during FSW were predicted by employing three-dimensional finite element models. It is shown that the bonding mechanism between the dissimilar materials is mechanical interlocking at the interface which controls the joint strength depending on the processing parameters. The most suitable dissimilar lap-joining regarding microstructural soundness is attained at w= 1600 rev min−1 and v = 25 mm min−1.... 

    A new procedure for the fabrication of dissimilar joints through injection of colloidal nanoparticles during friction stir processing: Proof concept for AA6062/PMMA joints

    , Article Journal of Manufacturing Processes ; Volume 49 , 2020 , Pages 335-343 Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We present a new semi-solid state procedure for efficient joining of dissimilar materials. The process called fed friction stir processing (FFSP) and works based on in-situ injection of colloidal nanoparticles in the welding line during processing. To present the efficiency of the process, friction stir welding of AA6062 aluminum alloy and poly(methyl methacrylate) (PMMA) through injection of alumina nanoparticles is presented. Microstructural features and mechanical characteristics of the weldments are elaborated. It is shown that in-situ feeding of the alumina nanoparticles during FFSP changes the thermo-mechanical regimes of the bonding zone and decreases the thickness of interaction...