Loading...
Search for: point-of-care-diagnostic
0.005 seconds

    Human cardiac troponin i sensor based on silver nanoparticle doped microsphere resonator

    , Article Journal of Optics (United Kingdom) ; Volume 14, Issue 12 , 2012 ; 20408978 (ISSN) Saliminasab, M ; Bahrampour, A ; Zandi, M. H ; Sharif University of Technology
    Abstract
    Human cardiac troponin I (cTnI) is a specific biomarker for diagnosis of acute myocardial infarction (AMI). In this paper, a composite sensing system of an optical microsphere resonator and silver nanoparticles based on surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) techniques towards a point of care diagnostic system for AMI using the cTnI biomarker in HEPES buffered solution (HBS) is proposed. Pump and Raman signals enter the optical fiber coupling into the microsphere, and then SRS occurs in the microsphere. The presence of silver nanoparticles on the microsphere surface provides a tremendous enhancement of the resulting Raman signal through an... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a...