Loading...
Search for: polymer-solar-cells
0.007 seconds

    Surface passivation of titanium dioxide via an electropolymerization method to improve the performance of dye-sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 15 , 2016 , Pages 12537-12543 ; 20462069 (ISSN) Mazloum Ardakani, M ; Khoshroo, A ; Taghavinia, N ; Hosseinzadeh, L ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In dye-sensitized solar cells recombination reactions at the TiO2 photoanode with the electrolyte interface plays a critical role in cell efficiency. Recombination of injected electrons in the TiO2 with acceptors in the electrolyte usually occurs on uncovered areas of TiO2 surfaces. In this work, we report electropolymerization of polymer films on nanoporous TiO2 electrode surfaces using an ionic liquid as the growth medium. The choice of ionic liquid as the growth medium for this study is based on the insolubility of dye N719 in this electrolyte, thus avoiding dye molecule detachment from the TiO2 photoanode surface over the entire potential range investigated during the... 

    Investigation on gel polymer electrolyte-based dye-sensitized solar cells using carbon nanotube

    , Article Ionics ; May , 2018 , Pages 1-7 ; 09477047 (ISSN) Sakali, S. M ; Khanmirzaei, M. H ; Lu, S. C ; Ramesh, S ; Ramesh, K ; Sharif University of Technology
    Institute for Ionics  2018
    Abstract
    A new poly (acrylonitrile) (PAN)-based gel polymer electrolyte (GPE) is fabricated to study the effect of carbon nanotube (CNT) on dye-sensitized solar cell (DSSC) efficiency. The GPEs are examined using electrochemical impedance spectroscopy (EIS) to analyze ionic conductivity. A maximum of 4.45 mS cm−1 ionic conductivity is achieved at room temperature with incorporation of 11 wt.% CNT. Performance of DSSC is examined with a solar simulator, and the highest energy conversion efficiency of 8.87% is achieved with the addition of 11 wt.% CNT. All GPE samples are found to follow Arrhenius model with temperature-dependent ionic conductivity testing. Structural properties are also characterized... 

    Investigation on gel polymer electrolyte-based dye-sensitized solar cells using carbon nanotube

    , Article Ionics ; Volume 25, Issue 1 , 2019 , Pages 319-325 ; 09477047 (ISSN) Sakali, S. M ; Khanmirzaei, M. H ; Lu, S. C ; Ramesh, S ; Ramesh, K ; Sharif University of Technology
    Institute for Ionics  2019
    Abstract
    A new poly (acrylonitrile) (PAN)-based gel polymer electrolyte (GPE) is fabricated to study the effect of carbon nanotube (CNT) on dye-sensitized solar cell (DSSC) efficiency. The GPEs are examined using electrochemical impedance spectroscopy (EIS) to analyze ionic conductivity. A maximum of 4.45 mS cm −1 ionic conductivity is achieved at room temperature with incorporation of 11 wt.% CNT. Performance of DSSC is examined with a solar simulator, and the highest energy conversion efficiency of 8.87% is achieved with the addition of 11 wt.% CNT. All GPE samples are found to follow Arrhenius model with temperature-dependent ionic conductivity testing. Structural properties are also characterized... 

    Enhanced electron transport induced by a ferroelectric field in efficient halide perovskite solar cells

    , Article Solar Energy Materials and Solar Cells ; Volume 206 , 2020 Zarenezhad, H ; Askari, M ; Halali, M ; Solati, N ; Balkan, T ; Kaya, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Perovskite solar cells have been appearing as a superior photovoltaic device owing to their high photovoltaic performance and low cost of fabrication. The formation of a compact and uniform perovskite layer with large crystal size is a significant factor to get the best device performance. In this work, polyvinylidene difluoride (PVDF) was used as a ferroelectric polymer additive to fabricate high-performance mesoporous CH3NH3PbI3-xClx mixed-halide perovskite solar cells in a sequential deposition method. Power conversion efficiency has been enhanced from 10.4 to 16.51% in an ambient atmosphere in the presence of an optimized amount of PVDF assuring continuous and smooth layers with large... 

    Polyvinylcarbazole as an efficient interfacial modifier for low-cost perovskite solar cells with CuInS2/Carbon hole-collecting electrode

    , Article Solar RRL ; Volume 5, Issue 7 , 2021 ; 2367198X (ISSN) Ghavaminia, E ; Behrouznejad, F ; Forouzandeh, M ; Khosroshahi, R ; Darbari, S ; Zhan, Y ; Taghavinia, N ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Different polymers have been already introduced for passivating the interfacial defects at the interface of perovskite and the organic hole transport material, meanwhile as an environmental barrier in perovskite solar cells (PSCs). Herein, polyvinylcarbazole (PVK) compared to polymethylmethacrylate (PMMA) at the interface of the perovskite (Cs0.05(MA0.83FA0.17)0.95Pb(Br0.17I0.83)3) layer and CuInS2/carbon as a low-cost inorganic hole-collecting electrode are investigated. By suppressing interfacial recombination using PMMA and PVK, saturation current density (in dark current) decreases one order of magnitude from 7.9 × 10−10 to 4.0 × 10−11 mA cm−2 by adding PMMA and two orders of magnitude... 

    Improved electron transportation of dye-sensitized solar cells using uniform mixed CNTs-TiO2 photoanode prepared by a new polymeric gel process

    , Article Journal of Nanoparticle Research ; Volume 15, Issue 9 , 2013 ; 13880764 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Masihi, N ; Akhlaghi, M. H ; Sharif University of Technology
    2013
    Abstract
    A new facile strategy for fabrication of high surface area electrode in the form of mixtures of coated carbon nanotubes (CNTs) and TiO2 nanoparticles with various weight ratios is reported. The so-called polymeric gel process was used to deposit thick film containing uniform distribution of TiO2 nanoparticles and coated CNTs with high porosity by dip coating for dye-sensitized solar cells (DSSCs) applications. Based on simultaneous differential thermal analysis, the minimum annealing temperature to obtain inorganic- and organic-free films was determined at 500°C. X-ray diffraction analysis revealed that deposited films were composed of primary nanoparticles with crystallite size in the range...